src/HOL/Hyperreal/SEQ.thy
changeset 29252 ea97aa6aeba2
parent 29251 8f84a608883d
parent 29205 7dc7a75033ea
child 29253 3c6cd80a4854
child 29254 ef3e2c3399d7
child 29332 edc1e2a56398
--- a/src/HOL/Hyperreal/SEQ.thy	Tue Dec 30 08:18:54 2008 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1136 +0,0 @@
-(*  Title       : SEQ.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-    Description : Convergence of sequences and series
-    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
-    Additional contributions by Jeremy Avigad and Brian Huffman
-*)
-
-header {* Sequences and Convergence *}
-
-theory SEQ
-imports "../Real/RealVector" "../RComplete"
-begin
-
-definition
-  Zseq :: "[nat \<Rightarrow> 'a::real_normed_vector] \<Rightarrow> bool" where
-    --{*Standard definition of sequence converging to zero*}
-  [code del]: "Zseq X = (\<forall>r>0. \<exists>no. \<forall>n\<ge>no. norm (X n) < r)"
-
-definition
-  LIMSEQ :: "[nat => 'a::real_normed_vector, 'a] => bool"
-    ("((_)/ ----> (_))" [60, 60] 60) where
-    --{*Standard definition of convergence of sequence*}
-  [code del]: "X ----> L = (\<forall>r. 0 < r --> (\<exists>no. \<forall>n. no \<le> n --> norm (X n - L) < r))"
-
-definition
-  lim :: "(nat => 'a::real_normed_vector) => 'a" where
-    --{*Standard definition of limit using choice operator*}
-  "lim X = (THE L. X ----> L)"
-
-definition
-  convergent :: "(nat => 'a::real_normed_vector) => bool" where
-    --{*Standard definition of convergence*}
-  "convergent X = (\<exists>L. X ----> L)"
-
-definition
-  Bseq :: "(nat => 'a::real_normed_vector) => bool" where
-    --{*Standard definition for bounded sequence*}
-  [code del]: "Bseq X = (\<exists>K>0.\<forall>n. norm (X n) \<le> K)"
-
-definition
-  monoseq :: "(nat=>real)=>bool" where
-    --{*Definition for monotonicity*}
-  [code del]: "monoseq X = ((\<forall>m. \<forall>n\<ge>m. X m \<le> X n) | (\<forall>m. \<forall>n\<ge>m. X n \<le> X m))"
-
-definition
-  subseq :: "(nat => nat) => bool" where
-    --{*Definition of subsequence*}
-  [code del]:   "subseq f = (\<forall>m. \<forall>n>m. (f m) < (f n))"
-
-definition
-  Cauchy :: "(nat => 'a::real_normed_vector) => bool" where
-    --{*Standard definition of the Cauchy condition*}
-  [code del]: "Cauchy X = (\<forall>e>0. \<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. norm (X m - X n) < e)"
-
-
-subsection {* Bounded Sequences *}
-
-lemma BseqI': assumes K: "\<And>n. norm (X n) \<le> K" shows "Bseq X"
-unfolding Bseq_def
-proof (intro exI conjI allI)
-  show "0 < max K 1" by simp
-next
-  fix n::nat
-  have "norm (X n) \<le> K" by (rule K)
-  thus "norm (X n) \<le> max K 1" by simp
-qed
-
-lemma BseqE: "\<lbrakk>Bseq X; \<And>K. \<lbrakk>0 < K; \<forall>n. norm (X n) \<le> K\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
-unfolding Bseq_def by auto
-
-lemma BseqI2': assumes K: "\<forall>n\<ge>N. norm (X n) \<le> K" shows "Bseq X"
-proof (rule BseqI')
-  let ?A = "norm ` X ` {..N}"
-  have 1: "finite ?A" by simp
-  fix n::nat
-  show "norm (X n) \<le> max K (Max ?A)"
-  proof (cases rule: linorder_le_cases)
-    assume "n \<ge> N"
-    hence "norm (X n) \<le> K" using K by simp
-    thus "norm (X n) \<le> max K (Max ?A)" by simp
-  next
-    assume "n \<le> N"
-    hence "norm (X n) \<in> ?A" by simp
-    with 1 have "norm (X n) \<le> Max ?A" by (rule Max_ge)
-    thus "norm (X n) \<le> max K (Max ?A)" by simp
-  qed
-qed
-
-lemma Bseq_ignore_initial_segment: "Bseq X \<Longrightarrow> Bseq (\<lambda>n. X (n + k))"
-unfolding Bseq_def by auto
-
-lemma Bseq_offset: "Bseq (\<lambda>n. X (n + k)) \<Longrightarrow> Bseq X"
-apply (erule BseqE)
-apply (rule_tac N="k" and K="K" in BseqI2')
-apply clarify
-apply (drule_tac x="n - k" in spec, simp)
-done
-
-
-subsection {* Sequences That Converge to Zero *}
-
-lemma ZseqI:
-  "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n) < r) \<Longrightarrow> Zseq X"
-unfolding Zseq_def by simp
-
-lemma ZseqD:
-  "\<lbrakk>Zseq X; 0 < r\<rbrakk> \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n) < r"
-unfolding Zseq_def by simp
-
-lemma Zseq_zero: "Zseq (\<lambda>n. 0)"
-unfolding Zseq_def by simp
-
-lemma Zseq_const_iff: "Zseq (\<lambda>n. k) = (k = 0)"
-unfolding Zseq_def by force
-
-lemma Zseq_norm_iff: "Zseq (\<lambda>n. norm (X n)) = Zseq (\<lambda>n. X n)"
-unfolding Zseq_def by simp
-
-lemma Zseq_imp_Zseq:
-  assumes X: "Zseq X"
-  assumes Y: "\<And>n. norm (Y n) \<le> norm (X n) * K"
-  shows "Zseq (\<lambda>n. Y n)"
-proof (cases)
-  assume K: "0 < K"
-  show ?thesis
-  proof (rule ZseqI)
-    fix r::real assume "0 < r"
-    hence "0 < r / K"
-      using K by (rule divide_pos_pos)
-    then obtain N where "\<forall>n\<ge>N. norm (X n) < r / K"
-      using ZseqD [OF X] by fast
-    hence "\<forall>n\<ge>N. norm (X n) * K < r"
-      by (simp add: pos_less_divide_eq K)
-    hence "\<forall>n\<ge>N. norm (Y n) < r"
-      by (simp add: order_le_less_trans [OF Y])
-    thus "\<exists>N. \<forall>n\<ge>N. norm (Y n) < r" ..
-  qed
-next
-  assume "\<not> 0 < K"
-  hence K: "K \<le> 0" by (simp only: linorder_not_less)
-  {
-    fix n::nat
-    have "norm (Y n) \<le> norm (X n) * K" by (rule Y)
-    also have "\<dots> \<le> norm (X n) * 0"
-      using K norm_ge_zero by (rule mult_left_mono)
-    finally have "norm (Y n) = 0" by simp
-  }
-  thus ?thesis by (simp add: Zseq_zero)
-qed
-
-lemma Zseq_le: "\<lbrakk>Zseq Y; \<forall>n. norm (X n) \<le> norm (Y n)\<rbrakk> \<Longrightarrow> Zseq X"
-by (erule_tac K="1" in Zseq_imp_Zseq, simp)
-
-lemma Zseq_add:
-  assumes X: "Zseq X"
-  assumes Y: "Zseq Y"
-  shows "Zseq (\<lambda>n. X n + Y n)"
-proof (rule ZseqI)
-  fix r::real assume "0 < r"
-  hence r: "0 < r / 2" by simp
-  obtain M where M: "\<forall>n\<ge>M. norm (X n) < r/2"
-    using ZseqD [OF X r] by fast
-  obtain N where N: "\<forall>n\<ge>N. norm (Y n) < r/2"
-    using ZseqD [OF Y r] by fast
-  show "\<exists>N. \<forall>n\<ge>N. norm (X n + Y n) < r"
-  proof (intro exI allI impI)
-    fix n assume n: "max M N \<le> n"
-    have "norm (X n + Y n) \<le> norm (X n) + norm (Y n)"
-      by (rule norm_triangle_ineq)
-    also have "\<dots> < r/2 + r/2"
-    proof (rule add_strict_mono)
-      from M n show "norm (X n) < r/2" by simp
-      from N n show "norm (Y n) < r/2" by simp
-    qed
-    finally show "norm (X n + Y n) < r" by simp
-  qed
-qed
-
-lemma Zseq_minus: "Zseq X \<Longrightarrow> Zseq (\<lambda>n. - X n)"
-unfolding Zseq_def by simp
-
-lemma Zseq_diff: "\<lbrakk>Zseq X; Zseq Y\<rbrakk> \<Longrightarrow> Zseq (\<lambda>n. X n - Y n)"
-by (simp only: diff_minus Zseq_add Zseq_minus)
-
-lemma (in bounded_linear) Zseq:
-  assumes X: "Zseq X"
-  shows "Zseq (\<lambda>n. f (X n))"
-proof -
-  obtain K where "\<And>x. norm (f x) \<le> norm x * K"
-    using bounded by fast
-  with X show ?thesis
-    by (rule Zseq_imp_Zseq)
-qed
-
-lemma (in bounded_bilinear) Zseq:
-  assumes X: "Zseq X"
-  assumes Y: "Zseq Y"
-  shows "Zseq (\<lambda>n. X n ** Y n)"
-proof (rule ZseqI)
-  fix r::real assume r: "0 < r"
-  obtain K where K: "0 < K"
-    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
-    using pos_bounded by fast
-  from K have K': "0 < inverse K"
-    by (rule positive_imp_inverse_positive)
-  obtain M where M: "\<forall>n\<ge>M. norm (X n) < r"
-    using ZseqD [OF X r] by fast
-  obtain N where N: "\<forall>n\<ge>N. norm (Y n) < inverse K"
-    using ZseqD [OF Y K'] by fast
-  show "\<exists>N. \<forall>n\<ge>N. norm (X n ** Y n) < r"
-  proof (intro exI allI impI)
-    fix n assume n: "max M N \<le> n"
-    have "norm (X n ** Y n) \<le> norm (X n) * norm (Y n) * K"
-      by (rule norm_le)
-    also have "norm (X n) * norm (Y n) * K < r * inverse K * K"
-    proof (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero K)
-      from M n show Xn: "norm (X n) < r" by simp
-      from N n show Yn: "norm (Y n) < inverse K" by simp
-    qed
-    also from K have "r * inverse K * K = r" by simp
-    finally show "norm (X n ** Y n) < r" .
-  qed
-qed
-
-lemma (in bounded_bilinear) Zseq_prod_Bseq:
-  assumes X: "Zseq X"
-  assumes Y: "Bseq Y"
-  shows "Zseq (\<lambda>n. X n ** Y n)"
-proof -
-  obtain K where K: "0 \<le> K"
-    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
-    using nonneg_bounded by fast
-  obtain B where B: "0 < B"
-    and norm_Y: "\<And>n. norm (Y n) \<le> B"
-    using Y [unfolded Bseq_def] by fast
-  from X show ?thesis
-  proof (rule Zseq_imp_Zseq)
-    fix n::nat
-    have "norm (X n ** Y n) \<le> norm (X n) * norm (Y n) * K"
-      by (rule norm_le)
-    also have "\<dots> \<le> norm (X n) * B * K"
-      by (intro mult_mono' order_refl norm_Y norm_ge_zero
-                mult_nonneg_nonneg K)
-    also have "\<dots> = norm (X n) * (B * K)"
-      by (rule mult_assoc)
-    finally show "norm (X n ** Y n) \<le> norm (X n) * (B * K)" .
-  qed
-qed
-
-lemma (in bounded_bilinear) Bseq_prod_Zseq:
-  assumes X: "Bseq X"
-  assumes Y: "Zseq Y"
-  shows "Zseq (\<lambda>n. X n ** Y n)"
-proof -
-  obtain K where K: "0 \<le> K"
-    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
-    using nonneg_bounded by fast
-  obtain B where B: "0 < B"
-    and norm_X: "\<And>n. norm (X n) \<le> B"
-    using X [unfolded Bseq_def] by fast
-  from Y show ?thesis
-  proof (rule Zseq_imp_Zseq)
-    fix n::nat
-    have "norm (X n ** Y n) \<le> norm (X n) * norm (Y n) * K"
-      by (rule norm_le)
-    also have "\<dots> \<le> B * norm (Y n) * K"
-      by (intro mult_mono' order_refl norm_X norm_ge_zero
-                mult_nonneg_nonneg K)
-    also have "\<dots> = norm (Y n) * (B * K)"
-      by (simp only: mult_ac)
-    finally show "norm (X n ** Y n) \<le> norm (Y n) * (B * K)" .
-  qed
-qed
-
-lemma (in bounded_bilinear) Zseq_left:
-  "Zseq X \<Longrightarrow> Zseq (\<lambda>n. X n ** a)"
-by (rule bounded_linear_left [THEN bounded_linear.Zseq])
-
-lemma (in bounded_bilinear) Zseq_right:
-  "Zseq X \<Longrightarrow> Zseq (\<lambda>n. a ** X n)"
-by (rule bounded_linear_right [THEN bounded_linear.Zseq])
-
-lemmas Zseq_mult = mult.Zseq
-lemmas Zseq_mult_right = mult.Zseq_right
-lemmas Zseq_mult_left = mult.Zseq_left
-
-
-subsection {* Limits of Sequences *}
-
-lemma LIMSEQ_iff:
-      "(X ----> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)"
-by (rule LIMSEQ_def)
-
-lemma LIMSEQ_Zseq_iff: "((\<lambda>n. X n) ----> L) = Zseq (\<lambda>n. X n - L)"
-by (simp only: LIMSEQ_def Zseq_def)
-
-lemma LIMSEQ_I:
-  "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r) \<Longrightarrow> X ----> L"
-by (simp add: LIMSEQ_def)
-
-lemma LIMSEQ_D:
-  "\<lbrakk>X ----> L; 0 < r\<rbrakk> \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
-by (simp add: LIMSEQ_def)
-
-lemma LIMSEQ_const: "(\<lambda>n. k) ----> k"
-by (simp add: LIMSEQ_def)
-
-lemma LIMSEQ_const_iff: "(\<lambda>n. k) ----> l = (k = l)"
-by (simp add: LIMSEQ_Zseq_iff Zseq_const_iff)
-
-lemma LIMSEQ_norm: "X ----> a \<Longrightarrow> (\<lambda>n. norm (X n)) ----> norm a"
-apply (simp add: LIMSEQ_def, safe)
-apply (drule_tac x="r" in spec, safe)
-apply (rule_tac x="no" in exI, safe)
-apply (drule_tac x="n" in spec, safe)
-apply (erule order_le_less_trans [OF norm_triangle_ineq3])
-done
-
-lemma LIMSEQ_ignore_initial_segment:
-  "f ----> a \<Longrightarrow> (\<lambda>n. f (n + k)) ----> a"
-apply (rule LIMSEQ_I)
-apply (drule (1) LIMSEQ_D)
-apply (erule exE, rename_tac N)
-apply (rule_tac x=N in exI)
-apply simp
-done
-
-lemma LIMSEQ_offset:
-  "(\<lambda>n. f (n + k)) ----> a \<Longrightarrow> f ----> a"
-apply (rule LIMSEQ_I)
-apply (drule (1) LIMSEQ_D)
-apply (erule exE, rename_tac N)
-apply (rule_tac x="N + k" in exI)
-apply clarify
-apply (drule_tac x="n - k" in spec)
-apply (simp add: le_diff_conv2)
-done
-
-lemma LIMSEQ_Suc: "f ----> l \<Longrightarrow> (\<lambda>n. f (Suc n)) ----> l"
-by (drule_tac k="1" in LIMSEQ_ignore_initial_segment, simp)
-
-lemma LIMSEQ_imp_Suc: "(\<lambda>n. f (Suc n)) ----> l \<Longrightarrow> f ----> l"
-by (rule_tac k="1" in LIMSEQ_offset, simp)
-
-lemma LIMSEQ_Suc_iff: "(\<lambda>n. f (Suc n)) ----> l = f ----> l"
-by (blast intro: LIMSEQ_imp_Suc LIMSEQ_Suc)
-
-lemma add_diff_add:
-  fixes a b c d :: "'a::ab_group_add"
-  shows "(a + c) - (b + d) = (a - b) + (c - d)"
-by simp
-
-lemma minus_diff_minus:
-  fixes a b :: "'a::ab_group_add"
-  shows "(- a) - (- b) = - (a - b)"
-by simp
-
-lemma LIMSEQ_add: "\<lbrakk>X ----> a; Y ----> b\<rbrakk> \<Longrightarrow> (\<lambda>n. X n + Y n) ----> a + b"
-by (simp only: LIMSEQ_Zseq_iff add_diff_add Zseq_add)
-
-lemma LIMSEQ_minus: "X ----> a \<Longrightarrow> (\<lambda>n. - X n) ----> - a"
-by (simp only: LIMSEQ_Zseq_iff minus_diff_minus Zseq_minus)
-
-lemma LIMSEQ_minus_cancel: "(\<lambda>n. - X n) ----> - a \<Longrightarrow> X ----> a"
-by (drule LIMSEQ_minus, simp)
-
-lemma LIMSEQ_diff: "\<lbrakk>X ----> a; Y ----> b\<rbrakk> \<Longrightarrow> (\<lambda>n. X n - Y n) ----> a - b"
-by (simp add: diff_minus LIMSEQ_add LIMSEQ_minus)
-
-lemma LIMSEQ_unique: "\<lbrakk>X ----> a; X ----> b\<rbrakk> \<Longrightarrow> a = b"
-by (drule (1) LIMSEQ_diff, simp add: LIMSEQ_const_iff)
-
-lemma (in bounded_linear) LIMSEQ:
-  "X ----> a \<Longrightarrow> (\<lambda>n. f (X n)) ----> f a"
-by (simp only: LIMSEQ_Zseq_iff diff [symmetric] Zseq)
-
-lemma (in bounded_bilinear) LIMSEQ:
-  "\<lbrakk>X ----> a; Y ----> b\<rbrakk> \<Longrightarrow> (\<lambda>n. X n ** Y n) ----> a ** b"
-by (simp only: LIMSEQ_Zseq_iff prod_diff_prod
-               Zseq_add Zseq Zseq_left Zseq_right)
-
-lemma LIMSEQ_mult:
-  fixes a b :: "'a::real_normed_algebra"
-  shows "[| X ----> a; Y ----> b |] ==> (%n. X n * Y n) ----> a * b"
-by (rule mult.LIMSEQ)
-
-lemma inverse_diff_inverse:
-  "\<lbrakk>(a::'a::division_ring) \<noteq> 0; b \<noteq> 0\<rbrakk>
-   \<Longrightarrow> inverse a - inverse b = - (inverse a * (a - b) * inverse b)"
-by (simp add: ring_simps)
-
-lemma Bseq_inverse_lemma:
-  fixes x :: "'a::real_normed_div_algebra"
-  shows "\<lbrakk>r \<le> norm x; 0 < r\<rbrakk> \<Longrightarrow> norm (inverse x) \<le> inverse r"
-apply (subst nonzero_norm_inverse, clarsimp)
-apply (erule (1) le_imp_inverse_le)
-done
-
-lemma Bseq_inverse:
-  fixes a :: "'a::real_normed_div_algebra"
-  assumes X: "X ----> a"
-  assumes a: "a \<noteq> 0"
-  shows "Bseq (\<lambda>n. inverse (X n))"
-proof -
-  from a have "0 < norm a" by simp
-  hence "\<exists>r>0. r < norm a" by (rule dense)
-  then obtain r where r1: "0 < r" and r2: "r < norm a" by fast
-  obtain N where N: "\<And>n. N \<le> n \<Longrightarrow> norm (X n - a) < r"
-    using LIMSEQ_D [OF X r1] by fast
-  show ?thesis
-  proof (rule BseqI2' [rule_format])
-    fix n assume n: "N \<le> n"
-    hence 1: "norm (X n - a) < r" by (rule N)
-    hence 2: "X n \<noteq> 0" using r2 by auto
-    hence "norm (inverse (X n)) = inverse (norm (X n))"
-      by (rule nonzero_norm_inverse)
-    also have "\<dots> \<le> inverse (norm a - r)"
-    proof (rule le_imp_inverse_le)
-      show "0 < norm a - r" using r2 by simp
-    next
-      have "norm a - norm (X n) \<le> norm (a - X n)"
-        by (rule norm_triangle_ineq2)
-      also have "\<dots> = norm (X n - a)"
-        by (rule norm_minus_commute)
-      also have "\<dots> < r" using 1 .
-      finally show "norm a - r \<le> norm (X n)" by simp
-    qed
-    finally show "norm (inverse (X n)) \<le> inverse (norm a - r)" .
-  qed
-qed
-
-lemma LIMSEQ_inverse_lemma:
-  fixes a :: "'a::real_normed_div_algebra"
-  shows "\<lbrakk>X ----> a; a \<noteq> 0; \<forall>n. X n \<noteq> 0\<rbrakk>
-         \<Longrightarrow> (\<lambda>n. inverse (X n)) ----> inverse a"
-apply (subst LIMSEQ_Zseq_iff)
-apply (simp add: inverse_diff_inverse nonzero_imp_inverse_nonzero)
-apply (rule Zseq_minus)
-apply (rule Zseq_mult_left)
-apply (rule mult.Bseq_prod_Zseq)
-apply (erule (1) Bseq_inverse)
-apply (simp add: LIMSEQ_Zseq_iff)
-done
-
-lemma LIMSEQ_inverse:
-  fixes a :: "'a::real_normed_div_algebra"
-  assumes X: "X ----> a"
-  assumes a: "a \<noteq> 0"
-  shows "(\<lambda>n. inverse (X n)) ----> inverse a"
-proof -
-  from a have "0 < norm a" by simp
-  then obtain k where "\<forall>n\<ge>k. norm (X n - a) < norm a"
-    using LIMSEQ_D [OF X] by fast
-  hence "\<forall>n\<ge>k. X n \<noteq> 0" by auto
-  hence k: "\<forall>n. X (n + k) \<noteq> 0" by simp
-
-  from X have "(\<lambda>n. X (n + k)) ----> a"
-    by (rule LIMSEQ_ignore_initial_segment)
-  hence "(\<lambda>n. inverse (X (n + k))) ----> inverse a"
-    using a k by (rule LIMSEQ_inverse_lemma)
-  thus "(\<lambda>n. inverse (X n)) ----> inverse a"
-    by (rule LIMSEQ_offset)
-qed
-
-lemma LIMSEQ_divide:
-  fixes a b :: "'a::real_normed_field"
-  shows "\<lbrakk>X ----> a; Y ----> b; b \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>n. X n / Y n) ----> a / b"
-by (simp add: LIMSEQ_mult LIMSEQ_inverse divide_inverse)
-
-lemma LIMSEQ_pow:
-  fixes a :: "'a::{real_normed_algebra,recpower}"
-  shows "X ----> a \<Longrightarrow> (\<lambda>n. (X n) ^ m) ----> a ^ m"
-by (induct m) (simp_all add: power_Suc LIMSEQ_const LIMSEQ_mult)
-
-lemma LIMSEQ_setsum:
-  assumes n: "\<And>n. n \<in> S \<Longrightarrow> X n ----> L n"
-  shows "(\<lambda>m. \<Sum>n\<in>S. X n m) ----> (\<Sum>n\<in>S. L n)"
-proof (cases "finite S")
-  case True
-  thus ?thesis using n
-  proof (induct)
-    case empty
-    show ?case
-      by (simp add: LIMSEQ_const)
-  next
-    case insert
-    thus ?case
-      by (simp add: LIMSEQ_add)
-  qed
-next
-  case False
-  thus ?thesis
-    by (simp add: LIMSEQ_const)
-qed
-
-lemma LIMSEQ_setprod:
-  fixes L :: "'a \<Rightarrow> 'b::{real_normed_algebra,comm_ring_1}"
-  assumes n: "\<And>n. n \<in> S \<Longrightarrow> X n ----> L n"
-  shows "(\<lambda>m. \<Prod>n\<in>S. X n m) ----> (\<Prod>n\<in>S. L n)"
-proof (cases "finite S")
-  case True
-  thus ?thesis using n
-  proof (induct)
-    case empty
-    show ?case
-      by (simp add: LIMSEQ_const)
-  next
-    case insert
-    thus ?case
-      by (simp add: LIMSEQ_mult)
-  qed
-next
-  case False
-  thus ?thesis
-    by (simp add: setprod_def LIMSEQ_const)
-qed
-
-lemma LIMSEQ_add_const: "f ----> a ==> (%n.(f n + b)) ----> a + b"
-by (simp add: LIMSEQ_add LIMSEQ_const)
-
-(* FIXME: delete *)
-lemma LIMSEQ_add_minus:
-     "[| X ----> a; Y ----> b |] ==> (%n. X n + -Y n) ----> a + -b"
-by (simp only: LIMSEQ_add LIMSEQ_minus)
-
-lemma LIMSEQ_diff_const: "f ----> a ==> (%n.(f n  - b)) ----> a - b"
-by (simp add: LIMSEQ_diff LIMSEQ_const)
-
-lemma LIMSEQ_diff_approach_zero: 
-  "g ----> L ==> (%x. f x - g x) ----> 0  ==>
-     f ----> L"
-  apply (drule LIMSEQ_add)
-  apply assumption
-  apply simp
-done
-
-lemma LIMSEQ_diff_approach_zero2: 
-  "f ----> L ==> (%x. f x - g x) ----> 0  ==>
-     g ----> L";
-  apply (drule LIMSEQ_diff)
-  apply assumption
-  apply simp
-done
-
-text{*A sequence tends to zero iff its abs does*}
-lemma LIMSEQ_norm_zero: "((\<lambda>n. norm (X n)) ----> 0) = (X ----> 0)"
-by (simp add: LIMSEQ_def)
-
-lemma LIMSEQ_rabs_zero: "((%n. \<bar>f n\<bar>) ----> 0) = (f ----> (0::real))"
-by (simp add: LIMSEQ_def)
-
-lemma LIMSEQ_imp_rabs: "f ----> (l::real) ==> (%n. \<bar>f n\<bar>) ----> \<bar>l\<bar>"
-by (drule LIMSEQ_norm, simp)
-
-text{*An unbounded sequence's inverse tends to 0*}
-
-lemma LIMSEQ_inverse_zero:
-  "\<forall>r::real. \<exists>N. \<forall>n\<ge>N. r < X n \<Longrightarrow> (\<lambda>n. inverse (X n)) ----> 0"
-apply (rule LIMSEQ_I)
-apply (drule_tac x="inverse r" in spec, safe)
-apply (rule_tac x="N" in exI, safe)
-apply (drule_tac x="n" in spec, safe)
-apply (frule positive_imp_inverse_positive)
-apply (frule (1) less_imp_inverse_less)
-apply (subgoal_tac "0 < X n", simp)
-apply (erule (1) order_less_trans)
-done
-
-text{*The sequence @{term "1/n"} tends to 0 as @{term n} tends to infinity*}
-
-lemma LIMSEQ_inverse_real_of_nat: "(%n. inverse(real(Suc n))) ----> 0"
-apply (rule LIMSEQ_inverse_zero, safe)
-apply (cut_tac x = r in reals_Archimedean2)
-apply (safe, rule_tac x = n in exI)
-apply (auto simp add: real_of_nat_Suc)
-done
-
-text{*The sequence @{term "r + 1/n"} tends to @{term r} as @{term n} tends to
-infinity is now easily proved*}
-
-lemma LIMSEQ_inverse_real_of_nat_add:
-     "(%n. r + inverse(real(Suc n))) ----> r"
-by (cut_tac LIMSEQ_add [OF LIMSEQ_const LIMSEQ_inverse_real_of_nat], auto)
-
-lemma LIMSEQ_inverse_real_of_nat_add_minus:
-     "(%n. r + -inverse(real(Suc n))) ----> r"
-by (cut_tac LIMSEQ_add_minus [OF LIMSEQ_const LIMSEQ_inverse_real_of_nat], auto)
-
-lemma LIMSEQ_inverse_real_of_nat_add_minus_mult:
-     "(%n. r*( 1 + -inverse(real(Suc n)))) ----> r"
-by (cut_tac b=1 in
-        LIMSEQ_mult [OF LIMSEQ_const LIMSEQ_inverse_real_of_nat_add_minus], auto)
-
-lemma LIMSEQ_le_const:
-  "\<lbrakk>X ----> (x::real); \<exists>N. \<forall>n\<ge>N. a \<le> X n\<rbrakk> \<Longrightarrow> a \<le> x"
-apply (rule ccontr, simp only: linorder_not_le)
-apply (drule_tac r="a - x" in LIMSEQ_D, simp)
-apply clarsimp
-apply (drule_tac x="max N no" in spec, drule mp, rule le_maxI1)
-apply (drule_tac x="max N no" in spec, drule mp, rule le_maxI2)
-apply simp
-done
-
-lemma LIMSEQ_le_const2:
-  "\<lbrakk>X ----> (x::real); \<exists>N. \<forall>n\<ge>N. X n \<le> a\<rbrakk> \<Longrightarrow> x \<le> a"
-apply (subgoal_tac "- a \<le> - x", simp)
-apply (rule LIMSEQ_le_const)
-apply (erule LIMSEQ_minus)
-apply simp
-done
-
-lemma LIMSEQ_le:
-  "\<lbrakk>X ----> x; Y ----> y; \<exists>N. \<forall>n\<ge>N. X n \<le> Y n\<rbrakk> \<Longrightarrow> x \<le> (y::real)"
-apply (subgoal_tac "0 \<le> y - x", simp)
-apply (rule LIMSEQ_le_const)
-apply (erule (1) LIMSEQ_diff)
-apply (simp add: le_diff_eq)
-done
-
-
-subsection {* Convergence *}
-
-lemma limI: "X ----> L ==> lim X = L"
-apply (simp add: lim_def)
-apply (blast intro: LIMSEQ_unique)
-done
-
-lemma convergentD: "convergent X ==> \<exists>L. (X ----> L)"
-by (simp add: convergent_def)
-
-lemma convergentI: "(X ----> L) ==> convergent X"
-by (auto simp add: convergent_def)
-
-lemma convergent_LIMSEQ_iff: "convergent X = (X ----> lim X)"
-by (auto intro: theI LIMSEQ_unique simp add: convergent_def lim_def)
-
-lemma convergent_minus_iff: "(convergent X) = (convergent (%n. -(X n)))"
-apply (simp add: convergent_def)
-apply (auto dest: LIMSEQ_minus)
-apply (drule LIMSEQ_minus, auto)
-done
-
-
-subsection {* Bounded Monotonic Sequences *}
-
-text{*Subsequence (alternative definition, (e.g. Hoskins)*}
-
-lemma subseq_Suc_iff: "subseq f = (\<forall>n. (f n) < (f (Suc n)))"
-apply (simp add: subseq_def)
-apply (auto dest!: less_imp_Suc_add)
-apply (induct_tac k)
-apply (auto intro: less_trans)
-done
-
-lemma monoseq_Suc:
-   "monoseq X = ((\<forall>n. X n \<le> X (Suc n))
-                 | (\<forall>n. X (Suc n) \<le> X n))"
-apply (simp add: monoseq_def)
-apply (auto dest!: le_imp_less_or_eq)
-apply (auto intro!: lessI [THEN less_imp_le] dest!: less_imp_Suc_add)
-apply (induct_tac "ka")
-apply (auto intro: order_trans)
-apply (erule contrapos_np)
-apply (induct_tac "k")
-apply (auto intro: order_trans)
-done
-
-lemma monoI1: "\<forall>m. \<forall> n \<ge> m. X m \<le> X n ==> monoseq X"
-by (simp add: monoseq_def)
-
-lemma monoI2: "\<forall>m. \<forall> n \<ge> m. X n \<le> X m ==> monoseq X"
-by (simp add: monoseq_def)
-
-lemma mono_SucI1: "\<forall>n. X n \<le> X (Suc n) ==> monoseq X"
-by (simp add: monoseq_Suc)
-
-lemma mono_SucI2: "\<forall>n. X (Suc n) \<le> X n ==> monoseq X"
-by (simp add: monoseq_Suc)
-
-text{*Bounded Sequence*}
-
-lemma BseqD: "Bseq X ==> \<exists>K. 0 < K & (\<forall>n. norm (X n) \<le> K)"
-by (simp add: Bseq_def)
-
-lemma BseqI: "[| 0 < K; \<forall>n. norm (X n) \<le> K |] ==> Bseq X"
-by (auto simp add: Bseq_def)
-
-lemma lemma_NBseq_def:
-     "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) =
-      (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
-apply auto
- prefer 2 apply force
-apply (cut_tac x = K in reals_Archimedean2, clarify)
-apply (rule_tac x = n in exI, clarify)
-apply (drule_tac x = na in spec)
-apply (auto simp add: real_of_nat_Suc)
-done
-
-text{* alternative definition for Bseq *}
-lemma Bseq_iff: "Bseq X = (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
-apply (simp add: Bseq_def)
-apply (simp (no_asm) add: lemma_NBseq_def)
-done
-
-lemma lemma_NBseq_def2:
-     "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
-apply (subst lemma_NBseq_def, auto)
-apply (rule_tac x = "Suc N" in exI)
-apply (rule_tac [2] x = N in exI)
-apply (auto simp add: real_of_nat_Suc)
- prefer 2 apply (blast intro: order_less_imp_le)
-apply (drule_tac x = n in spec, simp)
-done
-
-(* yet another definition for Bseq *)
-lemma Bseq_iff1a: "Bseq X = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
-by (simp add: Bseq_def lemma_NBseq_def2)
-
-subsubsection{*Upper Bounds and Lubs of Bounded Sequences*}
-
-lemma Bseq_isUb:
-  "!!(X::nat=>real). Bseq X ==> \<exists>U. isUb (UNIV::real set) {x. \<exists>n. X n = x} U"
-by (auto intro: isUbI setleI simp add: Bseq_def abs_le_iff)
-
-
-text{* Use completeness of reals (supremum property)
-   to show that any bounded sequence has a least upper bound*}
-
-lemma Bseq_isLub:
-  "!!(X::nat=>real). Bseq X ==>
-   \<exists>U. isLub (UNIV::real set) {x. \<exists>n. X n = x} U"
-by (blast intro: reals_complete Bseq_isUb)
-
-subsubsection{*A Bounded and Monotonic Sequence Converges*}
-
-lemma lemma_converg1:
-     "!!(X::nat=>real). [| \<forall>m. \<forall> n \<ge> m. X m \<le> X n;
-                  isLub (UNIV::real set) {x. \<exists>n. X n = x} (X ma)
-               |] ==> \<forall>n \<ge> ma. X n = X ma"
-apply safe
-apply (drule_tac y = "X n" in isLubD2)
-apply (blast dest: order_antisym)+
-done
-
-text{* The best of both worlds: Easier to prove this result as a standard
-   theorem and then use equivalence to "transfer" it into the
-   equivalent nonstandard form if needed!*}
-
-lemma Bmonoseq_LIMSEQ: "\<forall>n. m \<le> n --> X n = X m ==> \<exists>L. (X ----> L)"
-apply (simp add: LIMSEQ_def)
-apply (rule_tac x = "X m" in exI, safe)
-apply (rule_tac x = m in exI, safe)
-apply (drule spec, erule impE, auto)
-done
-
-lemma lemma_converg2:
-   "!!(X::nat=>real).
-    [| \<forall>m. X m ~= U;  isLub UNIV {x. \<exists>n. X n = x} U |] ==> \<forall>m. X m < U"
-apply safe
-apply (drule_tac y = "X m" in isLubD2)
-apply (auto dest!: order_le_imp_less_or_eq)
-done
-
-lemma lemma_converg3: "!!(X ::nat=>real). \<forall>m. X m \<le> U ==> isUb UNIV {x. \<exists>n. X n = x} U"
-by (rule setleI [THEN isUbI], auto)
-
-text{* FIXME: @{term "U - T < U"} is redundant *}
-lemma lemma_converg4: "!!(X::nat=> real).
-               [| \<forall>m. X m ~= U;
-                  isLub UNIV {x. \<exists>n. X n = x} U;
-                  0 < T;
-                  U + - T < U
-               |] ==> \<exists>m. U + -T < X m & X m < U"
-apply (drule lemma_converg2, assumption)
-apply (rule ccontr, simp)
-apply (simp add: linorder_not_less)
-apply (drule lemma_converg3)
-apply (drule isLub_le_isUb, assumption)
-apply (auto dest: order_less_le_trans)
-done
-
-text{*A standard proof of the theorem for monotone increasing sequence*}
-
-lemma Bseq_mono_convergent:
-     "[| Bseq X; \<forall>m. \<forall>n \<ge> m. X m \<le> X n |] ==> convergent (X::nat=>real)"
-apply (simp add: convergent_def)
-apply (frule Bseq_isLub, safe)
-apply (case_tac "\<exists>m. X m = U", auto)
-apply (blast dest: lemma_converg1 Bmonoseq_LIMSEQ)
-(* second case *)
-apply (rule_tac x = U in exI)
-apply (subst LIMSEQ_iff, safe)
-apply (frule lemma_converg2, assumption)
-apply (drule lemma_converg4, auto)
-apply (rule_tac x = m in exI, safe)
-apply (subgoal_tac "X m \<le> X n")
- prefer 2 apply blast
-apply (drule_tac x=n and P="%m. X m < U" in spec, arith)
-done
-
-lemma Bseq_minus_iff: "Bseq (%n. -(X n)) = Bseq X"
-by (simp add: Bseq_def)
-
-text{*Main monotonicity theorem*}
-lemma Bseq_monoseq_convergent: "[| Bseq X; monoseq X |] ==> convergent X"
-apply (simp add: monoseq_def, safe)
-apply (rule_tac [2] convergent_minus_iff [THEN ssubst])
-apply (drule_tac [2] Bseq_minus_iff [THEN ssubst])
-apply (auto intro!: Bseq_mono_convergent)
-done
-
-subsubsection{*A Few More Equivalence Theorems for Boundedness*}
-
-text{*alternative formulation for boundedness*}
-lemma Bseq_iff2: "Bseq X = (\<exists>k > 0. \<exists>x. \<forall>n. norm (X(n) + -x) \<le> k)"
-apply (unfold Bseq_def, safe)
-apply (rule_tac [2] x = "k + norm x" in exI)
-apply (rule_tac x = K in exI, simp)
-apply (rule exI [where x = 0], auto)
-apply (erule order_less_le_trans, simp)
-apply (drule_tac x=n in spec, fold diff_def)
-apply (drule order_trans [OF norm_triangle_ineq2])
-apply simp
-done
-
-text{*alternative formulation for boundedness*}
-lemma Bseq_iff3: "Bseq X = (\<exists>k > 0. \<exists>N. \<forall>n. norm(X(n) + -X(N)) \<le> k)"
-apply safe
-apply (simp add: Bseq_def, safe)
-apply (rule_tac x = "K + norm (X N)" in exI)
-apply auto
-apply (erule order_less_le_trans, simp)
-apply (rule_tac x = N in exI, safe)
-apply (drule_tac x = n in spec)
-apply (rule order_trans [OF norm_triangle_ineq], simp)
-apply (auto simp add: Bseq_iff2)
-done
-
-lemma BseqI2: "(\<forall>n. k \<le> f n & f n \<le> (K::real)) ==> Bseq f"
-apply (simp add: Bseq_def)
-apply (rule_tac x = " (\<bar>k\<bar> + \<bar>K\<bar>) + 1" in exI, auto)
-apply (drule_tac x = n in spec, arith)
-done
-
-
-subsection {* Cauchy Sequences *}
-
-lemma CauchyI:
-  "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e) \<Longrightarrow> Cauchy X"
-by (simp add: Cauchy_def)
-
-lemma CauchyD:
-  "\<lbrakk>Cauchy X; 0 < e\<rbrakk> \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e"
-by (simp add: Cauchy_def)
-
-subsubsection {* Cauchy Sequences are Bounded *}
-
-text{*A Cauchy sequence is bounded -- this is the standard
-  proof mechanization rather than the nonstandard proof*}
-
-lemma lemmaCauchy: "\<forall>n \<ge> M. norm (X M - X n) < (1::real)
-          ==>  \<forall>n \<ge> M. norm (X n :: 'a::real_normed_vector) < 1 + norm (X M)"
-apply (clarify, drule spec, drule (1) mp)
-apply (simp only: norm_minus_commute)
-apply (drule order_le_less_trans [OF norm_triangle_ineq2])
-apply simp
-done
-
-lemma Cauchy_Bseq: "Cauchy X ==> Bseq X"
-apply (simp add: Cauchy_def)
-apply (drule spec, drule mp, rule zero_less_one, safe)
-apply (drule_tac x="M" in spec, simp)
-apply (drule lemmaCauchy)
-apply (rule_tac k="M" in Bseq_offset)
-apply (simp add: Bseq_def)
-apply (rule_tac x="1 + norm (X M)" in exI)
-apply (rule conjI, rule order_less_le_trans [OF zero_less_one], simp)
-apply (simp add: order_less_imp_le)
-done
-
-subsubsection {* Cauchy Sequences are Convergent *}
-
-axclass banach \<subseteq> real_normed_vector
-  Cauchy_convergent: "Cauchy X \<Longrightarrow> convergent X"
-
-theorem LIMSEQ_imp_Cauchy:
-  assumes X: "X ----> a" shows "Cauchy X"
-proof (rule CauchyI)
-  fix e::real assume "0 < e"
-  hence "0 < e/2" by simp
-  with X have "\<exists>N. \<forall>n\<ge>N. norm (X n - a) < e/2" by (rule LIMSEQ_D)
-  then obtain N where N: "\<forall>n\<ge>N. norm (X n - a) < e/2" ..
-  show "\<exists>N. \<forall>m\<ge>N. \<forall>n\<ge>N. norm (X m - X n) < e"
-  proof (intro exI allI impI)
-    fix m assume "N \<le> m"
-    hence m: "norm (X m - a) < e/2" using N by fast
-    fix n assume "N \<le> n"
-    hence n: "norm (X n - a) < e/2" using N by fast
-    have "norm (X m - X n) = norm ((X m - a) - (X n - a))" by simp
-    also have "\<dots> \<le> norm (X m - a) + norm (X n - a)"
-      by (rule norm_triangle_ineq4)
-    also from m n have "\<dots> < e" by(simp add:field_simps)
-    finally show "norm (X m - X n) < e" .
-  qed
-qed
-
-lemma convergent_Cauchy: "convergent X \<Longrightarrow> Cauchy X"
-unfolding convergent_def
-by (erule exE, erule LIMSEQ_imp_Cauchy)
-
-text {*
-Proof that Cauchy sequences converge based on the one from
-http://pirate.shu.edu/~wachsmut/ira/numseq/proofs/cauconv.html
-*}
-
-text {*
-  If sequence @{term "X"} is Cauchy, then its limit is the lub of
-  @{term "{r::real. \<exists>N. \<forall>n\<ge>N. r < X n}"}
-*}
-
-lemma isUb_UNIV_I: "(\<And>y. y \<in> S \<Longrightarrow> y \<le> u) \<Longrightarrow> isUb UNIV S u"
-by (simp add: isUbI setleI)
-
-lemma real_abs_diff_less_iff:
-  "(\<bar>x - a\<bar> < (r::real)) = (a - r < x \<and> x < a + r)"
-by auto
-
-locale real_Cauchy =
-  fixes X :: "nat \<Rightarrow> real"
-  assumes X: "Cauchy X"
-  fixes S :: "real set"
-  defines S_def: "S \<equiv> {x::real. \<exists>N. \<forall>n\<ge>N. x < X n}"
-
-lemma real_CauchyI:
-  assumes "Cauchy X"
-  shows "real_Cauchy X"
-  proof qed (fact assms)
-
-lemma (in real_Cauchy) mem_S: "\<forall>n\<ge>N. x < X n \<Longrightarrow> x \<in> S"
-by (unfold S_def, auto)
-
-lemma (in real_Cauchy) bound_isUb:
-  assumes N: "\<forall>n\<ge>N. X n < x"
-  shows "isUb UNIV S x"
-proof (rule isUb_UNIV_I)
-  fix y::real assume "y \<in> S"
-  hence "\<exists>M. \<forall>n\<ge>M. y < X n"
-    by (simp add: S_def)
-  then obtain M where "\<forall>n\<ge>M. y < X n" ..
-  hence "y < X (max M N)" by simp
-  also have "\<dots> < x" using N by simp
-  finally show "y \<le> x"
-    by (rule order_less_imp_le)
-qed
-
-lemma (in real_Cauchy) isLub_ex: "\<exists>u. isLub UNIV S u"
-proof (rule reals_complete)
-  obtain N where "\<forall>m\<ge>N. \<forall>n\<ge>N. norm (X m - X n) < 1"
-    using CauchyD [OF X zero_less_one] by fast
-  hence N: "\<forall>n\<ge>N. norm (X n - X N) < 1" by simp
-  show "\<exists>x. x \<in> S"
-  proof
-    from N have "\<forall>n\<ge>N. X N - 1 < X n"
-      by (simp add: real_abs_diff_less_iff)
-    thus "X N - 1 \<in> S" by (rule mem_S)
-  qed
-  show "\<exists>u. isUb UNIV S u"
-  proof
-    from N have "\<forall>n\<ge>N. X n < X N + 1"
-      by (simp add: real_abs_diff_less_iff)
-    thus "isUb UNIV S (X N + 1)"
-      by (rule bound_isUb)
-  qed
-qed
-
-lemma (in real_Cauchy) isLub_imp_LIMSEQ:
-  assumes x: "isLub UNIV S x"
-  shows "X ----> x"
-proof (rule LIMSEQ_I)
-  fix r::real assume "0 < r"
-  hence r: "0 < r/2" by simp
-  obtain N where "\<forall>n\<ge>N. \<forall>m\<ge>N. norm (X n - X m) < r/2"
-    using CauchyD [OF X r] by fast
-  hence "\<forall>n\<ge>N. norm (X n - X N) < r/2" by simp
-  hence N: "\<forall>n\<ge>N. X N - r/2 < X n \<and> X n < X N + r/2"
-    by (simp only: real_norm_def real_abs_diff_less_iff)
-
-  from N have "\<forall>n\<ge>N. X N - r/2 < X n" by fast
-  hence "X N - r/2 \<in> S" by (rule mem_S)
-  hence 1: "X N - r/2 \<le> x" using x isLub_isUb isUbD by fast
-
-  from N have "\<forall>n\<ge>N. X n < X N + r/2" by fast
-  hence "isUb UNIV S (X N + r/2)" by (rule bound_isUb)
-  hence 2: "x \<le> X N + r/2" using x isLub_le_isUb by fast
-
-  show "\<exists>N. \<forall>n\<ge>N. norm (X n - x) < r"
-  proof (intro exI allI impI)
-    fix n assume n: "N \<le> n"
-    from N n have "X n < X N + r/2" and "X N - r/2 < X n" by simp+
-    thus "norm (X n - x) < r" using 1 2
-      by (simp add: real_abs_diff_less_iff)
-  qed
-qed
-
-lemma (in real_Cauchy) LIMSEQ_ex: "\<exists>x. X ----> x"
-proof -
-  obtain x where "isLub UNIV S x"
-    using isLub_ex by fast
-  hence "X ----> x"
-    by (rule isLub_imp_LIMSEQ)
-  thus ?thesis ..
-qed
-
-lemma real_Cauchy_convergent:
-  fixes X :: "nat \<Rightarrow> real"
-  shows "Cauchy X \<Longrightarrow> convergent X"
-unfolding convergent_def
-by (rule real_Cauchy.LIMSEQ_ex)
- (rule real_CauchyI)
-
-instance real :: banach
-by intro_classes (rule real_Cauchy_convergent)
-
-lemma Cauchy_convergent_iff:
-  fixes X :: "nat \<Rightarrow> 'a::banach"
-  shows "Cauchy X = convergent X"
-by (fast intro: Cauchy_convergent convergent_Cauchy)
-
-
-subsection {* Power Sequences *}
-
-text{*The sequence @{term "x^n"} tends to 0 if @{term "0\<le>x"} and @{term
-"x<1"}.  Proof will use (NS) Cauchy equivalence for convergence and
-  also fact that bounded and monotonic sequence converges.*}
-
-lemma Bseq_realpow: "[| 0 \<le> (x::real); x \<le> 1 |] ==> Bseq (%n. x ^ n)"
-apply (simp add: Bseq_def)
-apply (rule_tac x = 1 in exI)
-apply (simp add: power_abs)
-apply (auto dest: power_mono)
-done
-
-lemma monoseq_realpow: "[| 0 \<le> x; x \<le> 1 |] ==> monoseq (%n. x ^ n)"
-apply (clarify intro!: mono_SucI2)
-apply (cut_tac n = n and N = "Suc n" and a = x in power_decreasing, auto)
-done
-
-lemma convergent_realpow:
-  "[| 0 \<le> (x::real); x \<le> 1 |] ==> convergent (%n. x ^ n)"
-by (blast intro!: Bseq_monoseq_convergent Bseq_realpow monoseq_realpow)
-
-lemma LIMSEQ_inverse_realpow_zero_lemma:
-  fixes x :: real
-  assumes x: "0 \<le> x"
-  shows "real n * x + 1 \<le> (x + 1) ^ n"
-apply (induct n)
-apply simp
-apply simp
-apply (rule order_trans)
-prefer 2
-apply (erule mult_left_mono)
-apply (rule add_increasing [OF x], simp)
-apply (simp add: real_of_nat_Suc)
-apply (simp add: ring_distribs)
-apply (simp add: mult_nonneg_nonneg x)
-done
-
-lemma LIMSEQ_inverse_realpow_zero:
-  "1 < (x::real) \<Longrightarrow> (\<lambda>n. inverse (x ^ n)) ----> 0"
-proof (rule LIMSEQ_inverse_zero [rule_format])
-  fix y :: real
-  assume x: "1 < x"
-  hence "0 < x - 1" by simp
-  hence "\<forall>y. \<exists>N::nat. y < real N * (x - 1)"
-    by (rule reals_Archimedean3)
-  hence "\<exists>N::nat. y < real N * (x - 1)" ..
-  then obtain N::nat where "y < real N * (x - 1)" ..
-  also have "\<dots> \<le> real N * (x - 1) + 1" by simp
-  also have "\<dots> \<le> (x - 1 + 1) ^ N"
-    by (rule LIMSEQ_inverse_realpow_zero_lemma, cut_tac x, simp)
-  also have "\<dots> = x ^ N" by simp
-  finally have "y < x ^ N" .
-  hence "\<forall>n\<ge>N. y < x ^ n"
-    apply clarify
-    apply (erule order_less_le_trans)
-    apply (erule power_increasing)
-    apply (rule order_less_imp_le [OF x])
-    done
-  thus "\<exists>N. \<forall>n\<ge>N. y < x ^ n" ..
-qed
-
-lemma LIMSEQ_realpow_zero:
-  "\<lbrakk>0 \<le> (x::real); x < 1\<rbrakk> \<Longrightarrow> (\<lambda>n. x ^ n) ----> 0"
-proof (cases)
-  assume "x = 0"
-  hence "(\<lambda>n. x ^ Suc n) ----> 0" by (simp add: LIMSEQ_const)
-  thus ?thesis by (rule LIMSEQ_imp_Suc)
-next
-  assume "0 \<le> x" and "x \<noteq> 0"
-  hence x0: "0 < x" by simp
-  assume x1: "x < 1"
-  from x0 x1 have "1 < inverse x"
-    by (rule real_inverse_gt_one)
-  hence "(\<lambda>n. inverse (inverse x ^ n)) ----> 0"
-    by (rule LIMSEQ_inverse_realpow_zero)
-  thus ?thesis by (simp add: power_inverse)
-qed
-
-lemma LIMSEQ_power_zero:
-  fixes x :: "'a::{real_normed_algebra_1,recpower}"
-  shows "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) ----> 0"
-apply (drule LIMSEQ_realpow_zero [OF norm_ge_zero])
-apply (simp only: LIMSEQ_Zseq_iff, erule Zseq_le)
-apply (simp add: power_abs norm_power_ineq)
-done
-
-lemma LIMSEQ_divide_realpow_zero:
-  "1 < (x::real) ==> (%n. a / (x ^ n)) ----> 0"
-apply (cut_tac a = a and x1 = "inverse x" in
-        LIMSEQ_mult [OF LIMSEQ_const LIMSEQ_realpow_zero])
-apply (auto simp add: divide_inverse power_inverse)
-apply (simp add: inverse_eq_divide pos_divide_less_eq)
-done
-
-text{*Limit of @{term "c^n"} for @{term"\<bar>c\<bar> < 1"}*}
-
-lemma LIMSEQ_rabs_realpow_zero: "\<bar>c\<bar> < (1::real) ==> (%n. \<bar>c\<bar> ^ n) ----> 0"
-by (rule LIMSEQ_realpow_zero [OF abs_ge_zero])
-
-lemma LIMSEQ_rabs_realpow_zero2: "\<bar>c\<bar> < (1::real) ==> (%n. c ^ n) ----> 0"
-apply (rule LIMSEQ_rabs_zero [THEN iffD1])
-apply (auto intro: LIMSEQ_rabs_realpow_zero simp add: power_abs)
-done
-
-end