| changeset 63040 | eb4ddd18d635 |
| parent 62175 | 8ffc4d0e652d |
| child 67312 | 0d25e02759b7 |
--- a/src/HOL/HOLCF/Adm.thy Sun Apr 24 21:31:14 2016 +0200 +++ b/src/HOL/HOLCF/Adm.thy Mon Apr 25 16:09:26 2016 +0200 @@ -61,7 +61,7 @@ assumes P: "\<forall>i. \<exists>j\<ge>i. P (Y j)" shows "P (\<Squnion>i. Y i)" proof - - def f \<equiv> "\<lambda>i. LEAST j. i \<le> j \<and> P (Y j)" + define f where "f i = (LEAST j. i \<le> j \<and> P (Y j))" for i have chain': "chain (\<lambda>i. Y (f i))" unfolding f_def apply (rule chainI)