--- a/src/HOL/Library/Relational.thy Thu Jan 08 10:53:48 2009 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,700 +0,0 @@
-theory Relational
-imports Array Ref
-begin
-
-section{* Definition of the Relational framework *}
-
-text {* The crel predicate states that when a computation c runs with the heap h
- will result in return value r and a heap h' (if no exception occurs). *}
-
-definition crel :: "'a Heap \<Rightarrow> heap \<Rightarrow> heap \<Rightarrow> 'a \<Rightarrow> bool"
-where
- crel_def': "crel c h h' r \<longleftrightarrow> Heap_Monad.execute c h = (Inl r, h')"
-
-lemma crel_def: -- FIXME
- "crel c h h' r \<longleftrightarrow> (Inl r, h') = Heap_Monad.execute c h"
- unfolding crel_def' by auto
-
-lemma crel_deterministic: "\<lbrakk> crel f h h' a; crel f h h'' b \<rbrakk> \<Longrightarrow> (a = b) \<and> (h' = h'')"
-unfolding crel_def' by auto
-
-section {* Elimination rules *}
-
-text {* For all commands, we define simple elimination rules. *}
-(* FIXME: consumes 1 necessary ?? *)
-
-subsection {* Elimination rules for basic monadic commands *}
-
-lemma crelE[consumes 1]:
- assumes "crel (f >>= g) h h'' r'"
- obtains h' r where "crel f h h' r" "crel (g r) h' h'' r'"
- using assms
- by (auto simp add: crel_def bindM_def Let_def prod_case_beta split_def Pair_fst_snd_eq split add: sum.split_asm)
-
-lemma crelE'[consumes 1]:
- assumes "crel (f >> g) h h'' r'"
- obtains h' r where "crel f h h' r" "crel g h' h'' r'"
- using assms
- by (elim crelE) auto
-
-lemma crel_return[consumes 1]:
- assumes "crel (return x) h h' r"
- obtains "r = x" "h = h'"
- using assms
- unfolding crel_def return_def by simp
-
-lemma crel_raise[consumes 1]:
- assumes "crel (raise x) h h' r"
- obtains "False"
- using assms
- unfolding crel_def raise_def by simp
-
-lemma crel_if:
- assumes "crel (if c then t else e) h h' r"
- obtains "c" "crel t h h' r"
- | "\<not>c" "crel e h h' r"
- using assms
- unfolding crel_def by auto
-
-lemma crel_option_case:
- assumes "crel (case x of None \<Rightarrow> n | Some y \<Rightarrow> s y) h h' r"
- obtains "x = None" "crel n h h' r"
- | y where "x = Some y" "crel (s y) h h' r"
- using assms
- unfolding crel_def by auto
-
-lemma crel_mapM:
- assumes "crel (mapM f xs) h h' r"
- assumes "\<And>h h'. P f [] h h' []"
- assumes "\<And>h h1 h' x xs y ys. \<lbrakk> crel (f x) h h1 y; crel (mapM f xs) h1 h' ys; P f xs h1 h' ys \<rbrakk> \<Longrightarrow> P f (x#xs) h h' (y#ys)"
- shows "P f xs h h' r"
-using assms(1)
-proof (induct xs arbitrary: h h' r)
- case Nil with assms(2) show ?case
- by (auto elim: crel_return)
-next
- case (Cons x xs)
- from Cons(2) obtain h1 y ys where crel_f: "crel (f x) h h1 y"
- and crel_mapM: "crel (mapM f xs) h1 h' ys"
- and r_def: "r = y#ys"
- unfolding mapM.simps
- by (auto elim!: crelE crel_return)
- from Cons(1)[OF crel_mapM] crel_mapM crel_f assms(3) r_def
- show ?case by auto
-qed
-
-lemma crel_heap:
- assumes "crel (Heap_Monad.heap f) h h' r"
- obtains "h' = snd (f h)" "r = fst (f h)"
- using assms
- unfolding heap_def crel_def apfst_def split_def prod_fun_def by simp_all
-
-subsection {* Elimination rules for array commands *}
-
-lemma crel_length:
- assumes "crel (length a) h h' r"
- obtains "h = h'" "r = Heap.length a h'"
- using assms
- unfolding length_def
- by (elim crel_heap) simp
-
-(* Strong version of the lemma for this operation is missing *)
-lemma crel_new_weak:
- assumes "crel (Array.new n v) h h' r"
- obtains "get_array r h' = List.replicate n v"
- using assms unfolding Array.new_def
- by (elim crel_heap) (auto simp:Heap.array_def Let_def split_def)
-
-lemma crel_nth[consumes 1]:
- assumes "crel (nth a i) h h' r"
- obtains "r = (get_array a h) ! i" "h = h'" "i < Heap.length a h"
- using assms
- unfolding nth_def
- by (auto elim!: crelE crel_if crel_raise crel_length crel_heap)
-
-lemma crel_upd[consumes 1]:
- assumes "crel (upd i v a) h h' r"
- obtains "r = a" "h' = Heap.upd a i v h"
- using assms
- unfolding upd_def
- by (elim crelE crel_if crel_return crel_raise
- crel_length crel_heap) auto
-
-(* Strong version of the lemma for this operation is missing *)
-lemma crel_of_list_weak:
- assumes "crel (Array.of_list xs) h h' r"
- obtains "get_array r h' = xs"
- using assms
- unfolding of_list_def
- by (elim crel_heap) (simp add:get_array_init_array_list)
-
-lemma crel_map_entry:
- assumes "crel (Array.map_entry i f a) h h' r"
- obtains "r = a" "h' = Heap.upd a i (f (get_array a h ! i)) h"
- using assms
- unfolding Array.map_entry_def
- by (elim crelE crel_upd crel_nth) auto
-
-lemma crel_swap:
- assumes "crel (Array.swap i x a) h h' r"
- obtains "r = get_array a h ! i" "h' = Heap.upd a i x h"
- using assms
- unfolding Array.swap_def
- by (elim crelE crel_upd crel_nth crel_return) auto
-
-(* Strong version of the lemma for this operation is missing *)
-lemma crel_make_weak:
- assumes "crel (Array.make n f) h h' r"
- obtains "i < n \<Longrightarrow> get_array r h' ! i = f i"
- using assms
- unfolding Array.make_def
- by (elim crel_of_list_weak) auto
-
-lemma upt_conv_Cons':
- assumes "Suc a \<le> b"
- shows "[b - Suc a..<b] = (b - Suc a)#[b - a..<b]"
-proof -
- from assms have l: "b - Suc a < b" by arith
- from assms have "Suc (b - Suc a) = b - a" by arith
- with l show ?thesis by (simp add: upt_conv_Cons)
-qed
-
-lemma crel_mapM_nth:
- assumes
- "crel (mapM (Array.nth a) [Heap.length a h - n..<Heap.length a h]) h h' xs"
- assumes "n \<le> Heap.length a h"
- shows "h = h' \<and> xs = drop (Heap.length a h - n) (get_array a h)"
-using assms
-proof (induct n arbitrary: xs h h')
- case 0 thus ?case
- by (auto elim!: crel_return simp add: Heap.length_def)
-next
- case (Suc n)
- from Suc(3) have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
- by (simp add: upt_conv_Cons')
- with Suc(2) obtain r where
- crel_mapM: "crel (mapM (Array.nth a) [Heap.length a h - n..<Heap.length a h]) h h' r"
- and xs_def: "xs = get_array a h ! (Heap.length a h - Suc n) # r"
- by (auto elim!: crelE crel_nth crel_return)
- from Suc(3) have "Heap.length a h - n = Suc (Heap.length a h - Suc n)"
- by arith
- with Suc.hyps[OF crel_mapM] xs_def show ?case
- unfolding Heap.length_def
- by (auto simp add: nth_drop')
-qed
-
-lemma crel_freeze:
- assumes "crel (Array.freeze a) h h' xs"
- obtains "h = h'" "xs = get_array a h"
-proof
- from assms have "crel (mapM (Array.nth a) [0..<Heap.length a h]) h h' xs"
- unfolding freeze_def
- by (auto elim: crelE crel_length)
- hence "crel (mapM (Array.nth a) [(Heap.length a h - Heap.length a h)..<Heap.length a h]) h h' xs"
- by simp
- from crel_mapM_nth[OF this] show "h = h'" and "xs = get_array a h" by auto
-qed
-
-lemma crel_mapM_map_entry_remains:
- assumes "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) h h' r"
- assumes "i < Heap.length a h - n"
- shows "get_array a h ! i = get_array a h' ! i"
-using assms
-proof (induct n arbitrary: h h' r)
- case 0
- thus ?case
- by (auto elim: crel_return)
-next
- case (Suc n)
- let ?h1 = "Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h"
- from Suc(3) have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
- by (simp add: upt_conv_Cons')
- from Suc(2) this obtain r where
- crel_mapM: "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) ?h1 h' r"
- by (auto simp add: elim!: crelE crel_map_entry crel_return)
- have length_remains: "Heap.length a ?h1 = Heap.length a h" by simp
- from crel_mapM have crel_mapM': "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a ?h1 - n..<Heap.length a ?h1]) ?h1 h' r"
- by simp
- from Suc(1)[OF this] length_remains Suc(3) show ?case by simp
-qed
-
-lemma crel_mapM_map_entry_changes:
- assumes "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) h h' r"
- assumes "n \<le> Heap.length a h"
- assumes "i \<ge> Heap.length a h - n"
- assumes "i < Heap.length a h"
- shows "get_array a h' ! i = f (get_array a h ! i)"
-using assms
-proof (induct n arbitrary: h h' r)
- case 0
- thus ?case
- by (auto elim!: crel_return)
-next
- case (Suc n)
- let ?h1 = "Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h"
- from Suc(3) have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
- by (simp add: upt_conv_Cons')
- from Suc(2) this obtain r where
- crel_mapM: "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) ?h1 h' r"
- by (auto simp add: elim!: crelE crel_map_entry crel_return)
- have length_remains: "Heap.length a ?h1 = Heap.length a h" by simp
- from Suc(3) have less: "Heap.length a h - Suc n < Heap.length a h - n" by arith
- from Suc(3) have less2: "Heap.length a h - Suc n < Heap.length a h" by arith
- from Suc(4) length_remains have cases: "i = Heap.length a ?h1 - Suc n \<or> i \<ge> Heap.length a ?h1 - n" by arith
- from crel_mapM have crel_mapM': "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a ?h1 - n..<Heap.length a ?h1]) ?h1 h' r"
- by simp
- from Suc(1)[OF this] cases Suc(3) Suc(5) length_remains
- crel_mapM_map_entry_remains[OF this, of "Heap.length a h - Suc n", symmetric] less less2
- show ?case
- by (auto simp add: nth_list_update_eq Heap.length_def)
-qed
-
-lemma crel_mapM_map_entry_length:
- assumes "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) h h' r"
- assumes "n \<le> Heap.length a h"
- shows "Heap.length a h' = Heap.length a h"
-using assms
-proof (induct n arbitrary: h h' r)
- case 0
- thus ?case by (auto elim!: crel_return)
-next
- case (Suc n)
- let ?h1 = "Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h"
- from Suc(3) have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
- by (simp add: upt_conv_Cons')
- from Suc(2) this obtain r where
- crel_mapM: "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) ?h1 h' r"
- by (auto elim!: crelE crel_map_entry crel_return)
- have length_remains: "Heap.length a ?h1 = Heap.length a h" by simp
- from crel_mapM have crel_mapM': "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a ?h1 - n..<Heap.length a ?h1]) ?h1 h' r"
- by simp
- from Suc(1)[OF this] length_remains Suc(3) show ?case by simp
-qed
-
-lemma crel_mapM_map_entry:
-assumes "crel (mapM (\<lambda>n. map_entry n f a) [0..<Heap.length a h]) h h' r"
- shows "get_array a h' = List.map f (get_array a h)"
-proof -
- from assms have "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - Heap.length a h..<Heap.length a h]) h h' r" by simp
- from crel_mapM_map_entry_length[OF this]
- crel_mapM_map_entry_changes[OF this] show ?thesis
- unfolding Heap.length_def
- by (auto intro: nth_equalityI)
-qed
-
-lemma crel_map_weak:
- assumes crel_map: "crel (Array.map f a) h h' r"
- obtains "r = a" "get_array a h' = List.map f (get_array a h)"
-proof
- from assms crel_mapM_map_entry show "get_array a h' = List.map f (get_array a h)"
- unfolding Array.map_def
- by (fastsimp elim!: crelE crel_length crel_return)
- from assms show "r = a"
- unfolding Array.map_def
- by (elim crelE crel_return)
-qed
-
-subsection {* Elimination rules for reference commands *}
-
-(* TODO:
-maybe introduce a new predicate "extends h' h x"
-which means h' extends h with a new reference x.
-Then crel_new: would be
-assumes "crel (Ref.new v) h h' x"
-obtains "get_ref x h' = v"
-and "extends h' h x"
-
-and we would need further rules for extends:
-extends h' h x \<Longrightarrow> \<not> ref_present x h
-extends h' h x \<Longrightarrow> ref_present x h'
-extends h' h x \<Longrightarrow> ref_present y h \<Longrightarrow> ref_present y h'
-extends h' h x \<Longrightarrow> ref_present y h \<Longrightarrow> get_ref y h = get_ref y h'
-extends h' h x \<Longrightarrow> lim h' = Suc (lim h)
-*)
-
-lemma crel_Ref_new:
- assumes "crel (Ref.new v) h h' x"
- obtains "get_ref x h' = v"
- and "\<not> ref_present x h"
- and "ref_present x h'"
- and "\<forall>y. ref_present y h \<longrightarrow> get_ref y h = get_ref y h'"
- (* and "lim h' = Suc (lim h)" *)
- and "\<forall>y. ref_present y h \<longrightarrow> ref_present y h'"
- using assms
- unfolding Ref.new_def
- apply (elim crel_heap)
- unfolding Heap.ref_def
- apply (simp add: Let_def)
- unfolding Heap.new_ref_def
- apply (simp add: Let_def)
- unfolding ref_present_def
- apply auto
- unfolding get_ref_def set_ref_def
- apply auto
- done
-
-lemma crel_lookup:
- assumes "crel (!ref) h h' r"
- obtains "h = h'" "r = get_ref ref h"
-using assms
-unfolding Ref.lookup_def
-by (auto elim: crel_heap)
-
-lemma crel_update:
- assumes "crel (ref := v) h h' r"
- obtains "h' = set_ref ref v h" "r = ()"
-using assms
-unfolding Ref.update_def
-by (auto elim: crel_heap)
-
-lemma crel_change:
- assumes "crel (Ref.change f ref) h h' r"
- obtains "h' = set_ref ref (f (get_ref ref h)) h" "r = f (get_ref ref h)"
-using assms
-unfolding Ref.change_def Let_def
-by (auto elim!: crelE crel_lookup crel_update crel_return)
-
-subsection {* Elimination rules for the assert command *}
-
-lemma crel_assert[consumes 1]:
- assumes "crel (assert P x) h h' r"
- obtains "P x" "r = x" "h = h'"
- using assms
- unfolding assert_def
- by (elim crel_if crel_return crel_raise) auto
-
-lemma crel_assert_eq: "(\<And>h h' r. crel f h h' r \<Longrightarrow> P r) \<Longrightarrow> f \<guillemotright>= assert P = f"
-unfolding crel_def bindM_def Let_def assert_def
- raise_def return_def prod_case_beta
-apply (cases f)
-apply simp
-apply (simp add: expand_fun_eq split_def)
-apply auto
-apply (case_tac "fst (fun x)")
-apply (simp_all add: Pair_fst_snd_eq)
-apply (erule_tac x="x" in meta_allE)
-apply fastsimp
-done
-
-section {* Introduction rules *}
-
-subsection {* Introduction rules for basic monadic commands *}
-
-lemma crelI:
- assumes "crel f h h' r" "crel (g r) h' h'' r'"
- shows "crel (f >>= g) h h'' r'"
- using assms by (simp add: crel_def' bindM_def)
-
-lemma crelI':
- assumes "crel f h h' r" "crel g h' h'' r'"
- shows "crel (f >> g) h h'' r'"
- using assms by (intro crelI) auto
-
-lemma crel_returnI:
- shows "crel (return x) h h x"
- unfolding crel_def return_def by simp
-
-lemma crel_raiseI:
- shows "\<not> (crel (raise x) h h' r)"
- unfolding crel_def raise_def by simp
-
-lemma crel_ifI:
- assumes "c \<longrightarrow> crel t h h' r"
- "\<not>c \<longrightarrow> crel e h h' r"
- shows "crel (if c then t else e) h h' r"
- using assms
- unfolding crel_def by auto
-
-lemma crel_option_caseI:
- assumes "\<And>y. x = Some y \<Longrightarrow> crel (s y) h h' r"
- assumes "x = None \<Longrightarrow> crel n h h' r"
- shows "crel (case x of None \<Rightarrow> n | Some y \<Rightarrow> s y) h h' r"
-using assms
-by (auto split: option.split)
-
-lemma crel_heapI:
- shows "crel (Heap_Monad.heap f) h (snd (f h)) (fst (f h))"
- by (simp add: crel_def apfst_def split_def prod_fun_def)
-
-lemma crel_heapI':
- assumes "h' = snd (f h)" "r = fst (f h)"
- shows "crel (Heap_Monad.heap f) h h' r"
- using assms
- by (simp add: crel_def split_def apfst_def prod_fun_def)
-
-lemma crelI2:
- assumes "\<exists>h' rs'. crel f h h' rs' \<and> (\<exists>h'' rs. crel (g rs') h' h'' rs)"
- shows "\<exists>h'' rs. crel (f\<guillemotright>= g) h h'' rs"
- oops
-
-lemma crel_ifI2:
- assumes "c \<Longrightarrow> \<exists>h' r. crel t h h' r"
- "\<not> c \<Longrightarrow> \<exists>h' r. crel e h h' r"
- shows "\<exists> h' r. crel (if c then t else e) h h' r"
- oops
-
-subsection {* Introduction rules for array commands *}
-
-lemma crel_lengthI:
- shows "crel (length a) h h (Heap.length a h)"
- unfolding length_def
- by (rule crel_heapI') auto
-
-(* thm crel_newI for Array.new is missing *)
-
-lemma crel_nthI:
- assumes "i < Heap.length a h"
- shows "crel (nth a i) h h ((get_array a h) ! i)"
- using assms
- unfolding nth_def
- by (auto intro!: crelI crel_ifI crel_raiseI crel_lengthI crel_heapI')
-
-lemma crel_updI:
- assumes "i < Heap.length a h"
- shows "crel (upd i v a) h (Heap.upd a i v h) a"
- using assms
- unfolding upd_def
- by (auto intro!: crelI crel_ifI crel_returnI crel_raiseI
- crel_lengthI crel_heapI')
-
-(* thm crel_of_listI is missing *)
-
-(* thm crel_map_entryI is missing *)
-
-(* thm crel_swapI is missing *)
-
-(* thm crel_makeI is missing *)
-
-(* thm crel_freezeI is missing *)
-
-(* thm crel_mapI is missing *)
-
-subsection {* Introduction rules for reference commands *}
-
-lemma crel_lookupI:
- shows "crel (!ref) h h (get_ref ref h)"
- unfolding lookup_def by (auto intro!: crel_heapI')
-
-lemma crel_updateI:
- shows "crel (ref := v) h (set_ref ref v h) ()"
- unfolding update_def by (auto intro!: crel_heapI')
-
-lemma crel_changeI:
- shows "crel (Ref.change f ref) h (set_ref ref (f (get_ref ref h)) h) (f (get_ref ref h))"
-unfolding change_def Let_def by (auto intro!: crelI crel_returnI crel_lookupI crel_updateI)
-
-subsection {* Introduction rules for the assert command *}
-
-lemma crel_assertI:
- assumes "P x"
- shows "crel (assert P x) h h x"
- using assms
- unfolding assert_def
- by (auto intro!: crel_ifI crel_returnI crel_raiseI)
-
-section {* Defintion of the noError predicate *}
-
-text {* We add a simple definitional setting for crel intro rules
- where we only would like to show that the computation does not result in a exception for heap h,
- but we do not care about statements about the resulting heap and return value.*}
-
-definition noError :: "'a Heap \<Rightarrow> heap \<Rightarrow> bool"
-where
- "noError c h \<longleftrightarrow> (\<exists>r h'. (Inl r, h') = Heap_Monad.execute c h)"
-
-lemma noError_def': -- FIXME
- "noError c h \<longleftrightarrow> (\<exists>r h'. Heap_Monad.execute c h = (Inl r, h'))"
- unfolding noError_def apply auto proof -
- fix r h'
- assume "(Inl r, h') = Heap_Monad.execute c h"
- then have "Heap_Monad.execute c h = (Inl r, h')" ..
- then show "\<exists>r h'. Heap_Monad.execute c h = (Inl r, h')" by blast
-qed
-
-subsection {* Introduction rules for basic monadic commands *}
-
-lemma noErrorI:
- assumes "noError f h"
- assumes "\<And>h' r. crel f h h' r \<Longrightarrow> noError (g r) h'"
- shows "noError (f \<guillemotright>= g) h"
- using assms
- by (auto simp add: noError_def' crel_def' bindM_def)
-
-lemma noErrorI':
- assumes "noError f h"
- assumes "\<And>h' r. crel f h h' r \<Longrightarrow> noError g h'"
- shows "noError (f \<guillemotright> g) h"
- using assms
- by (auto simp add: noError_def' crel_def' bindM_def)
-
-lemma noErrorI2:
-"\<lbrakk>crel f h h' r ; noError f h; noError (g r) h'\<rbrakk>
-\<Longrightarrow> noError (f \<guillemotright>= g) h"
-by (auto simp add: noError_def' crel_def' bindM_def)
-
-lemma noError_return:
- shows "noError (return x) h"
- unfolding noError_def return_def
- by auto
-
-lemma noError_if:
- assumes "c \<Longrightarrow> noError t h" "\<not> c \<Longrightarrow> noError e h"
- shows "noError (if c then t else e) h"
- using assms
- unfolding noError_def
- by auto
-
-lemma noError_option_case:
- assumes "\<And>y. x = Some y \<Longrightarrow> noError (s y) h"
- assumes "noError n h"
- shows "noError (case x of None \<Rightarrow> n | Some y \<Rightarrow> s y) h"
-using assms
-by (auto split: option.split)
-
-lemma noError_mapM:
-assumes "\<forall>x \<in> set xs. noError (f x) h \<and> crel (f x) h h (r x)"
-shows "noError (mapM f xs) h"
-using assms
-proof (induct xs)
- case Nil
- thus ?case
- unfolding mapM.simps by (intro noError_return)
-next
- case (Cons x xs)
- thus ?case
- unfolding mapM.simps
- by (auto intro: noErrorI2[of "f x"] noErrorI noError_return)
-qed
-
-lemma noError_heap:
- shows "noError (Heap_Monad.heap f) h"
- by (simp add: noError_def' apfst_def prod_fun_def split_def)
-
-subsection {* Introduction rules for array commands *}
-
-lemma noError_length:
- shows "noError (Array.length a) h"
- unfolding length_def
- by (intro noError_heap)
-
-lemma noError_new:
- shows "noError (Array.new n v) h"
-unfolding Array.new_def by (intro noError_heap)
-
-lemma noError_upd:
- assumes "i < Heap.length a h"
- shows "noError (Array.upd i v a) h"
- using assms
- unfolding upd_def
- by (auto intro!: noErrorI noError_if noError_return noError_length noError_heap) (auto elim: crel_length)
-
-lemma noError_nth:
-assumes "i < Heap.length a h"
- shows "noError (Array.nth a i) h"
- using assms
- unfolding nth_def
- by (auto intro!: noErrorI noError_if noError_return noError_length noError_heap) (auto elim: crel_length)
-
-lemma noError_of_list:
- shows "noError (of_list ls) h"
- unfolding of_list_def by (rule noError_heap)
-
-lemma noError_map_entry:
- assumes "i < Heap.length a h"
- shows "noError (map_entry i f a) h"
- using assms
- unfolding map_entry_def
- by (auto elim: crel_nth intro!: noErrorI noError_nth noError_upd)
-
-lemma noError_swap:
- assumes "i < Heap.length a h"
- shows "noError (swap i x a) h"
- using assms
- unfolding swap_def
- by (auto elim: crel_nth intro!: noErrorI noError_return noError_nth noError_upd)
-
-lemma noError_make:
- shows "noError (make n f) h"
- unfolding make_def
- by (auto intro: noError_of_list)
-
-(*TODO: move to HeapMonad *)
-lemma mapM_append:
- "mapM f (xs @ ys) = mapM f xs \<guillemotright>= (\<lambda>xs. mapM f ys \<guillemotright>= (\<lambda>ys. return (xs @ ys)))"
- by (induct xs) (simp_all add: monad_simp)
-
-lemma noError_freeze:
- shows "noError (freeze a) h"
-unfolding freeze_def
-by (auto intro!: noErrorI noError_length noError_mapM[of _ _ _ "\<lambda>x. get_array a h ! x"]
- noError_nth crel_nthI elim: crel_length)
-
-lemma noError_mapM_map_entry:
- assumes "n \<le> Heap.length a h"
- shows "noError (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) h"
-using assms
-proof (induct n arbitrary: h)
- case 0
- thus ?case by (auto intro: noError_return)
-next
- case (Suc n)
- from Suc.prems have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
- by (simp add: upt_conv_Cons')
- with Suc.hyps[of "(Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h)"] Suc.prems show ?case
- by (auto simp add: intro!: noErrorI noError_return noError_map_entry elim: crel_map_entry)
-qed
-
-lemma noError_map:
- shows "noError (Array.map f a) h"
-using noError_mapM_map_entry[of "Heap.length a h" a h]
-unfolding Array.map_def
-by (auto intro: noErrorI noError_length noError_return elim!: crel_length)
-
-subsection {* Introduction rules for the reference commands *}
-
-lemma noError_Ref_new:
- shows "noError (Ref.new v) h"
-unfolding Ref.new_def by (intro noError_heap)
-
-lemma noError_lookup:
- shows "noError (!ref) h"
- unfolding lookup_def by (intro noError_heap)
-
-lemma noError_update:
- shows "noError (ref := v) h"
- unfolding update_def by (intro noError_heap)
-
-lemma noError_change:
- shows "noError (Ref.change f ref) h"
- unfolding Ref.change_def Let_def by (intro noErrorI noError_lookup noError_update noError_return)
-
-subsection {* Introduction rules for the assert command *}
-
-lemma noError_assert:
- assumes "P x"
- shows "noError (assert P x) h"
- using assms
- unfolding assert_def
- by (auto intro: noError_if noError_return)
-
-section {* Cumulative lemmas *}
-
-lemmas crel_elim_all =
- crelE crelE' crel_return crel_raise crel_if crel_option_case
- crel_length crel_new_weak crel_nth crel_upd crel_of_list_weak crel_map_entry crel_swap crel_make_weak crel_freeze crel_map_weak
- crel_Ref_new crel_lookup crel_update crel_change
- crel_assert
-
-lemmas crel_intro_all =
- crelI crelI' crel_returnI crel_raiseI crel_ifI crel_option_caseI
- crel_lengthI (* crel_newI *) crel_nthI crel_updI (* crel_of_listI crel_map_entryI crel_swapI crel_makeI crel_freezeI crel_mapI *)
- (* crel_Ref_newI *) crel_lookupI crel_updateI crel_changeI
- crel_assert
-
-lemmas noError_intro_all =
- noErrorI noErrorI' noError_return noError_if noError_option_case
- noError_length noError_new noError_nth noError_upd noError_of_list noError_map_entry noError_swap noError_make noError_freeze noError_map
- noError_Ref_new noError_lookup noError_update noError_change
- noError_assert
-
-end
\ No newline at end of file