src/HOL/Transfer.thy
 changeset 47325 ec6187036495 child 47355 3d9d98e0f1a4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Transfer.thy	Tue Apr 03 22:31:00 2012 +0200
@@ -0,0 +1,240 @@
+(*  Title:      HOL/Transfer.thy
+    Author:     Brian Huffman, TU Muenchen
+*)
+
+header {* Generic theorem transfer using relations *}
+
+theory Transfer
+imports Plain Hilbert_Choice
+uses ("Tools/transfer.ML")
+begin
+
+subsection {* Relator for function space *}
+
+definition
+  fun_rel :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" (infixr "===>" 55)
+where
+  "fun_rel A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))"
+
+lemma fun_relI [intro]:
+  assumes "\<And>x y. A x y \<Longrightarrow> B (f x) (g y)"
+  shows "(A ===> B) f g"
+  using assms by (simp add: fun_rel_def)
+
+lemma fun_relD:
+  assumes "(A ===> B) f g" and "A x y"
+  shows "B (f x) (g y)"
+  using assms by (simp add: fun_rel_def)
+
+lemma fun_relE:
+  assumes "(A ===> B) f g" and "A x y"
+  obtains "B (f x) (g y)"
+  using assms by (simp add: fun_rel_def)
+
+lemma fun_rel_eq:
+  shows "((op =) ===> (op =)) = (op =)"
+  by (auto simp add: fun_eq_iff elim: fun_relE)
+
+lemma fun_rel_eq_rel:
+  shows "((op =) ===> R) = (\<lambda>f g. \<forall>x. R (f x) (g x))"
+
+
+subsection {* Transfer method *}
+
+text {* Explicit tags for application, abstraction, and relation
+membership allow for backward proof methods. *}
+
+definition App :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
+  where "App f \<equiv> f"
+
+definition Abs :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
+  where "Abs f \<equiv> f"
+
+definition Rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
+  where "Rel r \<equiv> r"
+
+text {* Handling of meta-logic connectives *}
+
+definition transfer_forall where
+  "transfer_forall \<equiv> All"
+
+definition transfer_implies where
+  "transfer_implies \<equiv> op \<longrightarrow>"
+
+lemma transfer_forall_eq: "(\<And>x. P x) \<equiv> Trueprop (transfer_forall (\<lambda>x. P x))"
+  unfolding atomize_all transfer_forall_def ..
+
+lemma transfer_implies_eq: "(A \<Longrightarrow> B) \<equiv> Trueprop (transfer_implies A B)"
+  unfolding atomize_imp transfer_implies_def ..
+
+lemma transfer_start: "\<lbrakk>Rel (op =) P Q; P\<rbrakk> \<Longrightarrow> Q"
+  unfolding Rel_def by simp
+
+lemma transfer_start': "\<lbrakk>Rel (op \<longrightarrow>) P Q; P\<rbrakk> \<Longrightarrow> Q"
+  unfolding Rel_def by simp
+
+lemma Rel_eq_refl: "Rel (op =) x x"
+  unfolding Rel_def ..
+
+use "Tools/transfer.ML"
+
+setup Transfer.setup
+
+lemma Rel_App [transfer_raw]:
+  assumes "Rel (A ===> B) f g" and "Rel A x y"
+  shows "Rel B (App f x) (App g y)"
+  using assms unfolding Rel_def App_def fun_rel_def by fast
+
+lemma Rel_Abs [transfer_raw]:
+  assumes "\<And>x y. Rel A x y \<Longrightarrow> Rel B (f x) (g y)"
+  shows "Rel (A ===> B) (Abs (\<lambda>x. f x)) (Abs (\<lambda>y. g y))"
+  using assms unfolding Rel_def Abs_def fun_rel_def by fast
+
+hide_const (open) App Abs Rel
+
+
+subsection {* Predicates on relations, i.e. ``class constraints'' *}
+
+definition right_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
+  where "right_total R \<longleftrightarrow> (\<forall>y. \<exists>x. R x y)"
+
+definition right_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
+  where "right_unique R \<longleftrightarrow> (\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z)"
+
+definition bi_total :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
+  where "bi_total R \<longleftrightarrow> (\<forall>x. \<exists>y. R x y) \<and> (\<forall>y. \<exists>x. R x y)"
+
+definition bi_unique :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool"
+  where "bi_unique R \<longleftrightarrow>
+    (\<forall>x y z. R x y \<longrightarrow> R x z \<longrightarrow> y = z) \<and>
+    (\<forall>x y z. R x z \<longrightarrow> R y z \<longrightarrow> x = y)"
+
+lemma right_total_alt_def:
+  "right_total R \<longleftrightarrow> ((R ===> op \<longrightarrow>) ===> op \<longrightarrow>) All All"
+  unfolding right_total_def fun_rel_def
+  apply (rule iffI, fast)
+  apply (rule allI)
+  apply (drule_tac x="\<lambda>x. True" in spec)
+  apply (drule_tac x="\<lambda>y. \<exists>x. R x y" in spec)
+  apply fast
+  done
+
+lemma right_unique_alt_def:
+  "right_unique R \<longleftrightarrow> (R ===> R ===> op \<longrightarrow>) (op =) (op =)"
+  unfolding right_unique_def fun_rel_def by auto
+
+lemma bi_total_alt_def:
+  "bi_total R \<longleftrightarrow> ((R ===> op =) ===> op =) All All"
+  unfolding bi_total_def fun_rel_def
+  apply (rule iffI, fast)
+  apply safe
+  apply (drule_tac x="\<lambda>x. \<exists>y. R x y" in spec)
+  apply (drule_tac x="\<lambda>y. True" in spec)
+  apply fast
+  apply (drule_tac x="\<lambda>x. True" in spec)
+  apply (drule_tac x="\<lambda>y. \<exists>x. R x y" in spec)
+  apply fast
+  done
+
+lemma bi_unique_alt_def:
+  "bi_unique R \<longleftrightarrow> (R ===> R ===> op =) (op =) (op =)"
+  unfolding bi_unique_def fun_rel_def by auto
+
+
+subsection {* Properties of relators *}
+
+lemma right_total_eq [transfer_rule]: "right_total (op =)"
+  unfolding right_total_def by simp
+
+lemma right_unique_eq [transfer_rule]: "right_unique (op =)"
+  unfolding right_unique_def by simp
+
+lemma bi_total_eq [transfer_rule]: "bi_total (op =)"
+  unfolding bi_total_def by simp
+
+lemma bi_unique_eq [transfer_rule]: "bi_unique (op =)"
+  unfolding bi_unique_def by simp
+
+lemma right_total_fun [transfer_rule]:
+  "\<lbrakk>right_unique A; right_total B\<rbrakk> \<Longrightarrow> right_total (A ===> B)"
+  unfolding right_total_def fun_rel_def
+  apply (rule allI, rename_tac g)
+  apply (rule_tac x="\<lambda>x. SOME z. B z (g (THE y. A x y))" in exI)
+  apply clarify
+  apply (subgoal_tac "(THE y. A x y) = y", simp)
+  apply (rule someI_ex)
+  apply (simp)
+  apply (rule the_equality)
+  apply assumption
+  done
+
+lemma right_unique_fun [transfer_rule]:
+  "\<lbrakk>right_total A; right_unique B\<rbrakk> \<Longrightarrow> right_unique (A ===> B)"
+  unfolding right_total_def right_unique_def fun_rel_def
+  by (clarify, rule ext, fast)
+
+lemma bi_total_fun [transfer_rule]:
+  "\<lbrakk>bi_unique A; bi_total B\<rbrakk> \<Longrightarrow> bi_total (A ===> B)"
+  unfolding bi_total_def fun_rel_def
+  apply safe
+  apply (rename_tac f)
+  apply (rule_tac x="\<lambda>y. SOME z. B (f (THE x. A x y)) z" in exI)
+  apply clarify
+  apply (subgoal_tac "(THE x. A x y) = x", simp)
+  apply (rule someI_ex)
+  apply (simp)
+  apply (rule the_equality)
+  apply assumption
+  apply (rename_tac g)
+  apply (rule_tac x="\<lambda>x. SOME z. B z (g (THE y. A x y))" in exI)
+  apply clarify
+  apply (subgoal_tac "(THE y. A x y) = y", simp)
+  apply (rule someI_ex)
+  apply (simp)
+  apply (rule the_equality)
+  apply assumption
+  done
+
+lemma bi_unique_fun [transfer_rule]:
+  "\<lbrakk>bi_total A; bi_unique B\<rbrakk> \<Longrightarrow> bi_unique (A ===> B)"
+  unfolding bi_total_def bi_unique_def fun_rel_def fun_eq_iff
+  by (safe, metis, fast)
+
+
+subsection {* Correspondence rules *}
+
+lemma eq_parametric [transfer_rule]:
+  assumes "bi_unique A"
+  shows "(A ===> A ===> op =) (op =) (op =)"
+  using assms unfolding bi_unique_def fun_rel_def by auto
+
+lemma All_parametric [transfer_rule]:
+  assumes "bi_total A"
+  shows "((A ===> op =) ===> op =) All All"
+  using assms unfolding bi_total_def fun_rel_def by fast
+
+lemma Ex_parametric [transfer_rule]:
+  assumes "bi_total A"
+  shows "((A ===> op =) ===> op =) Ex Ex"
+  using assms unfolding bi_total_def fun_rel_def by fast
+
+lemma If_parametric [transfer_rule]: "(op = ===> A ===> A ===> A) If If"
+  unfolding fun_rel_def by simp
+
+lemma comp_parametric [transfer_rule]:
+  "((B ===> C) ===> (A ===> B) ===> (A ===> C)) (op \<circ>) (op \<circ>)"
+  unfolding fun_rel_def by simp
+
+lemma fun_upd_parametric [transfer_rule]:
+  assumes [transfer_rule]: "bi_unique A"
+  shows "((A ===> B) ===> A ===> B ===> A ===> B) fun_upd fun_upd"
+  unfolding fun_upd_def [abs_def] by correspondence
+
+lemmas transfer_forall_parametric [transfer_rule]
+  = All_parametric [folded transfer_forall_def]
+
+end