--- a/src/HOL/Decision_Procs/Approximation.thy Thu Mar 05 00:16:28 2009 +0100
+++ b/src/HOL/Decision_Procs/Approximation.thy Wed Mar 04 17:12:23 2009 -0800
@@ -619,7 +619,7 @@
using arctan_0_1_bounds[OF `0 \<le> Ifloat ?DIV` `Ifloat ?DIV \<le> 1`] by auto
also have "\<dots> \<le> 2 * arctan (Ifloat x / ?R)"
using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono)
- also have "2 * arctan (Ifloat x / ?R) = arctan (Ifloat x)" using arctan_half[symmetric] unfolding numeral_2_eq_2 power_Suc2 realpow_0 real_mult_1 .
+ also have "2 * arctan (Ifloat x / ?R) = arctan (Ifloat x)" using arctan_half[symmetric] unfolding numeral_2_eq_2 power_Suc2 power_0 real_mult_1 .
finally show ?thesis unfolding lb_arctan.simps Let_def if_not_P[OF `\<not> x < 0`] if_not_P[OF `\<not> x \<le> Float 1 -1`] if_P[OF True] .
next
case False
@@ -708,7 +708,7 @@
have "0 \<le> Ifloat x / ?R" using `0 \<le> Ifloat x` `0 < ?R` unfolding real_0_le_divide_iff by auto
hence "0 \<le> Ifloat ?DIV" using monotone by (rule order_trans)
- have "arctan (Ifloat x) = 2 * arctan (Ifloat x / ?R)" using arctan_half unfolding numeral_2_eq_2 power_Suc2 realpow_0 real_mult_1 .
+ have "arctan (Ifloat x) = 2 * arctan (Ifloat x / ?R)" using arctan_half unfolding numeral_2_eq_2 power_Suc2 power_0 real_mult_1 .
also have "\<dots> \<le> 2 * arctan (Ifloat ?DIV)"
using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono)
also have "\<dots> \<le> Ifloat (Float 1 1 * ?ub_horner ?DIV)" unfolding Ifloat_mult[of "Float 1 1"] Float_num
@@ -1285,7 +1285,7 @@
have "sin (Ifloat x) = sqrt (1 - cos (Ifloat x) ^ 2)" unfolding sin_squared_eq[symmetric] real_sqrt_abs using `0 \<le> sin (Ifloat x)` by auto
also have "\<dots> \<le> sqrt (Ifloat (1 - lb_cos prec x * lb_cos prec x))"
proof (rule real_sqrt_le_mono)
- have "Ifloat (lb_cos prec x * lb_cos prec x) \<le> cos (Ifloat x) ^ 2" unfolding numeral_2_eq_2 power_Suc2 realpow_0 Ifloat_mult
+ have "Ifloat (lb_cos prec x * lb_cos prec x) \<le> cos (Ifloat x) ^ 2" unfolding numeral_2_eq_2 power_Suc2 power_0 Ifloat_mult
using `0 \<le> Ifloat (lb_cos prec x)` lb_cos[OF `0 \<le> Ifloat x` `Ifloat x \<le> pi`] `0 \<le> cos (Ifloat x)` by(auto intro!: mult_mono)
thus "1 - cos (Ifloat x) ^ 2 \<le> Ifloat (1 - lb_cos prec x * lb_cos prec x)" unfolding Ifloat_sub Ifloat_1 by auto
qed
@@ -1317,7 +1317,7 @@
qed
also have "\<dots> \<le> sqrt (1 - cos (Ifloat x) ^ 2)"
proof (rule real_sqrt_le_mono)
- have "cos (Ifloat x) ^ 2 \<le> Ifloat (ub_cos prec x * ub_cos prec x)" unfolding numeral_2_eq_2 power_Suc2 realpow_0 Ifloat_mult
+ have "cos (Ifloat x) ^ 2 \<le> Ifloat (ub_cos prec x * ub_cos prec x)" unfolding numeral_2_eq_2 power_Suc2 power_0 Ifloat_mult
using `0 \<le> Ifloat (ub_cos prec x)` lb_cos[OF `0 \<le> Ifloat x` `Ifloat x \<le> pi`] `0 \<le> cos (Ifloat x)` by(auto intro!: mult_mono)
thus "Ifloat (1 - ub_cos prec x * ub_cos prec x) \<le> 1 - cos (Ifloat x) ^ 2" unfolding Ifloat_sub Ifloat_1 by auto
qed
@@ -1814,7 +1814,7 @@
{
have "Ifloat (lb_ln2 prec * ?s) \<le> ln 2 * real (e + (bitlen m - 1))" (is "?lb2 \<le> _")
- unfolding Ifloat_mult Ifloat_ge0_exp[OF order_refl] nat_0 realpow_0 mult_1_right
+ unfolding Ifloat_mult Ifloat_ge0_exp[OF order_refl] nat_0 power_0 mult_1_right
using lb_ln2[of prec]
proof (rule mult_right_mono)
have "1 \<le> Float m e" using `1 \<le> x` Float unfolding le_float_def by auto
@@ -1837,7 +1837,7 @@
have "ln (Ifloat ?x) \<le> Ifloat ((?x - 1) * ub_ln_horner prec (get_odd prec) 1 (?x - 1))" (is "_ \<le> ?ub_horner") by auto
moreover
have "ln 2 * real (e + (bitlen m - 1)) \<le> Ifloat (ub_ln2 prec * ?s)" (is "_ \<le> ?ub2")
- unfolding Ifloat_mult Ifloat_ge0_exp[OF order_refl] nat_0 realpow_0 mult_1_right
+ unfolding Ifloat_mult Ifloat_ge0_exp[OF order_refl] nat_0 power_0 mult_1_right
using ub_ln2[of prec]
proof (rule mult_right_mono)
have "1 \<le> Float m e" using `1 \<le> x` Float unfolding le_float_def by auto