src/HOL/Rational.thy
changeset 30273 ecd6f0ca62ea
parent 30242 aea5d7fa7ef5
child 30649 57753e0ec1d4
--- a/src/HOL/Rational.thy	Thu Mar 05 00:16:28 2009 +0100
+++ b/src/HOL/Rational.thy	Wed Mar 04 17:12:23 2009 -0800
@@ -158,8 +158,8 @@
 
 primrec power_rat
 where
-  rat_power_0:     "q ^ 0 = (1\<Colon>rat)"
-  | rat_power_Suc: "q ^ Suc n = (q\<Colon>rat) * (q ^ n)"
+  "q ^ 0 = (1\<Colon>rat)"
+| "q ^ Suc n = (q\<Colon>rat) * (q ^ n)"
 
 instance proof
   fix q r s :: rat show "(q * r) * s = q * (r * s)" 
@@ -200,6 +200,8 @@
   show "q ^ (Suc n) = q * (q ^ n)" by simp
 qed
 
+declare power_rat.simps [simp del]
+
 end
 
 lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
@@ -666,7 +668,7 @@
 
 lemma of_rat_power:
   "(of_rat (a ^ n)::'a::{field_char_0,recpower}) = of_rat a ^ n"
-by (induct n) (simp_all add: of_rat_mult power_Suc)
+by (induct n) (simp_all add: of_rat_mult)
 
 lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
 apply (induct a, induct b)