src/HOLCF/One.thy
changeset 2640 ee4dfce170a0
parent 2275 dbce3dce821a
child 3717 e28553315355
--- a/src/HOLCF/One.thy	Sat Feb 15 18:24:05 1997 +0100
+++ b/src/HOLCF/One.thy	Mon Feb 17 10:57:11 1997 +0100
@@ -1,47 +1,21 @@
-(*  Title:      HOLCF/one.thy
+(*  Title:      HOLCF/One.thy
     ID:         $Id$
-    Author:     Franz Regensburger
-    Copyright   1993 Technische Universitaet Muenchen
-
-Introduce atomic type one = (void)u
-
-The type is axiomatized as the least solution of a domain equation.
-The functor term that specifies the domain equation is: 
-
-  FT = <U,K_{void}>
-
-For details see chapter 5 of:
-
-[Franz Regensburger] HOLCF: Eine konservative Erweiterung von HOL um LCF,
-                     Dissertation, Technische Universit"at M"unchen, 1994
-
+    Author:     Oscar Slotosch
+    Copyright   1997 Technische Universitaet Muenchen
 *)
 
-One = ccc1+
+One = Lift +
 
-types one 0
-arities one :: pcpo
+types one = "unit lift"
 
 consts
-        abs_one         :: "(void)u -> one"
-        rep_one         :: "one -> (void)u"
-        one             :: "one"
-        one_when        :: "'c -> one -> 'c"
+	ONE             :: "one"
+
+translations
+	     "one" == (type) "unit lift" 
 
 rules
-  abs_one_iso   "abs_one`(rep_one`u) = u"
-  rep_one_iso   "rep_one`(abs_one`x) = x"
-
-defs
-  one_def       "one == abs_one`(up`UU)"
-  one_when_def "one_when == (LAM c u.fup`(LAM x.c)`(rep_one`u))"
-
-translations
-  "case l of one => t1" == "one_when`t1`l"
-
+  ONE_def     "ONE == Def()"
 end
 
 
-
-
-