src/HOLCF/Up2.ML
changeset 2640 ee4dfce170a0
parent 2278 d63ffafce255
child 3323 194ae2e0c193
--- a/src/HOLCF/Up2.ML	Sat Feb 15 18:24:05 1997 +0100
+++ b/src/HOLCF/Up2.ML	Mon Feb 17 10:57:11 1997 +0100
@@ -3,52 +3,69 @@
     Author:     Franz Regensburger
     Copyright   1993 Technische Universitaet Muenchen
 
-Lemmas for up2.thy 
+Lemmas for Up2.thy 
 *)
 
 open Up2;
 
+(* for compatibility with old HOLCF-Version *)
+qed_goal "inst_up_po" thy "(op <<)=(%x1 x2.case Rep_Up(x1) of \               
+\               Inl(y1) => True \
+\             | Inr(y2) => (case Rep_Up(x2) of Inl(z1) => False \
+\                                            | Inr(z2) => y2<<z2))"
+ (fn prems => 
+        [
+        (fold_goals_tac [po_def,less_up_def]),
+        (rtac refl 1)
+        ]);
+
 (* -------------------------------------------------------------------------*)
 (* type ('a)u is pointed                                                    *)
 (* ------------------------------------------------------------------------ *)
 
-qed_goal "minimal_up" Up2.thy "UU_up << z"
+qed_goal "minimal_up" thy "Abs_Up(Inl ()) << z"
  (fn prems =>
         [
-        (stac inst_up_po 1),
-        (rtac less_up1a 1)
+        (simp_tac (!simpset addsimps [po_def,less_up1a]) 1)
+        ]);
+
+bind_thm ("UU_up_def",minimal_up RS minimal2UU RS sym);
+
+qed_goal "least_up" thy "? x::'a u.!y.x<<y"
+(fn prems =>
+        [
+        (res_inst_tac [("x","Abs_Up(Inl ())")] exI 1),
+        (rtac (minimal_up RS allI) 1)
         ]);
 
 (* -------------------------------------------------------------------------*)
 (* access to less_up in class po                                          *)
 (* ------------------------------------------------------------------------ *)
 
-qed_goal "less_up2b" Up2.thy "~ Iup(x) << UU_up"
+qed_goal "less_up2b" thy "~ Iup(x) << Abs_Up(Inl ())"
  (fn prems =>
         [
-        (stac inst_up_po 1),
-        (rtac less_up1b 1)
+        (simp_tac (!simpset addsimps [po_def,less_up1b]) 1)
         ]);
 
-qed_goal "less_up2c" Up2.thy "(Iup(x)<<Iup(y)) = (x<<y)"
+qed_goal "less_up2c" thy "(Iup(x)<<Iup(y)) = (x<<y)"
  (fn prems =>
         [
-        (stac inst_up_po 1),
-        (rtac less_up1c 1)
+        (simp_tac (!simpset addsimps [po_def,less_up1c]) 1)
         ]);
 
 (* ------------------------------------------------------------------------ *)
 (* Iup and Ifup are monotone                                               *)
 (* ------------------------------------------------------------------------ *)
 
-qed_goalw "monofun_Iup" Up2.thy [monofun] "monofun(Iup)"
+qed_goalw "monofun_Iup" thy [monofun] "monofun(Iup)"
  (fn prems =>
         [
         (strip_tac 1),
         (etac (less_up2c RS iffD2) 1)
         ]);
 
-qed_goalw "monofun_Ifup1" Up2.thy [monofun] "monofun(Ifup)"
+qed_goalw "monofun_Ifup1" thy [monofun] "monofun(Ifup)"
  (fn prems =>
         [
         (strip_tac 1),
@@ -60,7 +77,7 @@
         (etac monofun_cfun_fun 1)
         ]);
 
-qed_goalw "monofun_Ifup2" Up2.thy [monofun] "monofun(Ifup(f))"
+qed_goalw "monofun_Ifup2" thy [monofun] "monofun(Ifup(f))"
  (fn prems =>
         [
         (strip_tac 1),
@@ -82,8 +99,7 @@
 (* Some kind of surjectivity lemma                                          *)
 (* ------------------------------------------------------------------------ *)
 
-
-qed_goal "up_lemma1" Up2.thy  "z=Iup(x) ==> Iup(Ifup(LAM x.x)(z)) = z"
+qed_goal "up_lemma1" thy  "z=Iup(x) ==> Iup(Ifup(LAM x.x)(z)) = z"
  (fn prems =>
         [
         (cut_facts_tac prems 1),
@@ -94,7 +110,7 @@
 (* ('a)u is a cpo                                                           *)
 (* ------------------------------------------------------------------------ *)
 
-qed_goal "lub_up1a" Up2.thy 
+qed_goal "lub_up1a" thy 
 "[|is_chain(Y);? i x.Y(i)=Iup(x)|] ==>\
 \ range(Y) <<| Iup(lub(range(%i.(Ifup (LAM x.x) (Y(i))))))"
  (fn prems =>
@@ -105,7 +121,7 @@
         (rtac ub_rangeI 1),
         (rtac allI 1),
         (res_inst_tac [("p","Y(i)")] upE 1),
-        (res_inst_tac [("s","UU_up"),("t","Y(i)")] subst 1),
+        (res_inst_tac [("s","Abs_Up (Inl ())"),("t","Y(i)")] subst 1),
         (etac sym 1),
         (rtac minimal_up 1),
         (res_inst_tac [("t","Y(i)")] (up_lemma1 RS subst) 1),
@@ -117,7 +133,7 @@
         (res_inst_tac [("p","u")] upE 1),
         (etac exE 1),
         (etac exE 1),
-        (res_inst_tac [("P","Y(i)<<UU_up")] notE 1),
+        (res_inst_tac [("P","Y(i)<<Abs_Up (Inl ())")] notE 1),
         (res_inst_tac [("s","Iup(x)"),("t","Y(i)")] ssubst 1),
         (atac 1),
         (rtac less_up2b 1),
@@ -131,9 +147,9 @@
         (etac (monofun_Ifup2 RS ub2ub_monofun) 1)
         ]);
 
-qed_goal "lub_up1b" Up2.thy 
+qed_goal "lub_up1b" thy 
 "[|is_chain(Y);!i x. Y(i)~=Iup(x)|] ==>\
-\ range(Y) <<| UU_up"
+\ range(Y) <<| Abs_Up (Inl ())"
  (fn prems =>
         [
         (cut_facts_tac prems 1),
@@ -142,7 +158,7 @@
         (rtac ub_rangeI 1),
         (rtac allI 1),
         (res_inst_tac [("p","Y(i)")] upE 1),
-        (res_inst_tac [("s","UU_up"),("t","Y(i)")] ssubst 1),
+        (res_inst_tac [("s","Abs_Up (Inl ())"),("t","Y(i)")] ssubst 1),
         (atac 1),
         (rtac refl_less 1),
         (rtac notE 1),
@@ -166,7 +182,7 @@
  lub (range ?Y1) = UU_up
 *)
 
-qed_goal "cpo_up" Up2.thy 
+qed_goal "cpo_up" thy 
         "is_chain(Y::nat=>('a)u) ==> ? x.range(Y) <<|x"
  (fn prems =>
         [