src/Pure/thm.ML
changeset 16601 ee8eefade568
parent 16425 2427be27cc60
child 16656 18b0cb22057d
--- a/src/Pure/thm.ML	Wed Jun 29 15:13:30 2005 +0200
+++ b/src/Pure/thm.ML	Wed Jun 29 15:13:31 2005 +0200
@@ -20,8 +20,10 @@
   (*certified terms*)
   type cterm
   exception CTERM of string
-  val rep_cterm: cterm -> {thy: theory, sign: theory, t: term, T: typ, maxidx: int}
-  val crep_cterm: cterm -> {thy: theory, sign: theory, t: term, T: ctyp, maxidx: int}
+  val rep_cterm: cterm ->
+    {thy: theory, sign: theory, t: term, T: typ, maxidx: int, sorts: sort list}
+  val crep_cterm: cterm ->
+    {thy: theory, sign: theory, t: term, T: ctyp, maxidx: int, sorts: sort list}
   val theory_of_cterm: cterm -> theory
   val sign_of_cterm: cterm -> theory    (*obsolete*)
   val term_of: cterm -> term
@@ -95,7 +97,6 @@
   val combination: thm -> thm -> thm
   val equal_intr: thm -> thm -> thm
   val equal_elim: thm -> thm -> thm
-  val implies_intr_hyps: thm -> thm
   val flexflex_rule: thm -> thm Seq.seq
   val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
   val trivial: cterm -> thm
@@ -167,23 +168,28 @@
 
 fun dest_ctyp (Ctyp {thy_ref, T = Type (s, Ts)}) =
       map (fn T => Ctyp {thy_ref = thy_ref, T = T}) Ts
-  | dest_ctyp ct = [ct];
+  | dest_ctyp cT = [cT];
 
 
 
 (** certified terms **)
 
-(*certified terms with checked typ and maxidx of Vars/TVars*)
+(*certified terms with checked typ, maxidx, and sorts*)
+datatype cterm = Cterm of
+ {thy_ref: theory_ref,
+  t: term,
+  T: typ,
+  maxidx: int,
+  sorts: sort list};
 
-datatype cterm = Cterm of {thy_ref: theory_ref, t: term, T: typ, maxidx: int};
-
-fun rep_cterm (Cterm {thy_ref, t, T, maxidx}) =
+fun rep_cterm (Cterm {thy_ref, t, T, maxidx, sorts}) =
   let val thy =  Theory.deref thy_ref
-  in {thy = thy, sign = thy, t = t, T = T, maxidx = maxidx} end;
+  in {thy = thy, sign = thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end;
 
-fun crep_cterm (Cterm {thy_ref, t, T, maxidx}) =
+fun crep_cterm (Cterm {thy_ref, t, T, maxidx, sorts}) =
   let val thy = Theory.deref thy_ref in
-    {thy = thy, sign = thy, t = t, T = Ctyp {thy_ref = thy_ref, T = T}, maxidx = maxidx}
+   {thy = thy, sign = thy, t = t, T = Ctyp {thy_ref = thy_ref, T = T},
+    maxidx = maxidx, sorts = sorts}
   end;
 
 fun theory_of_cterm (Cterm {thy_ref, ...}) = Theory.deref thy_ref;
@@ -194,85 +200,87 @@
 fun ctyp_of_term (Cterm {thy_ref, T, ...}) = Ctyp {thy_ref = thy_ref, T = T};
 
 fun cterm_of thy tm =
-  let val (t, T, maxidx) = Sign.certify_term (Sign.pp thy) thy tm
-  in  Cterm {thy_ref = Theory.self_ref thy, t = t, T = T, maxidx = maxidx}
-  end;
-
+  let
+    val (t, T, maxidx) = Sign.certify_term (Sign.pp thy) thy tm;
+    val sorts = Sorts.insert_term t [];
+  in Cterm {thy_ref = Theory.self_ref thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end;
 
 exception CTERM of string;
 
 (*Destruct application in cterms*)
-fun dest_comb (Cterm {thy_ref, T, maxidx, t = A $ B}) =
+fun dest_comb (Cterm {thy_ref, T, maxidx, sorts, t = A $ B}) =
       let val typeA = fastype_of A;
           val typeB =
             case typeA of Type("fun",[S,T]) => S
-                        | _ => error "Function type expected in dest_comb";
+                        | _ => sys_error "Function type expected in dest_comb";
       in
-      (Cterm {thy_ref=thy_ref, maxidx=maxidx, t=A, T=typeA},
-       Cterm {thy_ref=thy_ref, maxidx=maxidx, t=B, T=typeB})
+      (Cterm {thy_ref=thy_ref, maxidx=maxidx, sorts=sorts, t=A, T=typeA},
+       Cterm {thy_ref=thy_ref, maxidx=maxidx, sorts=sorts, t=B, T=typeB})
       end
   | dest_comb _ = raise CTERM "dest_comb";
 
 (*Destruct abstraction in cterms*)
-fun dest_abs a (Cterm {thy_ref, T as Type("fun",[_,S]), maxidx, t=Abs(x,ty,M)}) =
+fun dest_abs a (Cterm {thy_ref, T as Type("fun",[_,S]), maxidx, sorts, t=Abs(x,ty,M)}) =
       let val (y,N) = variant_abs (if_none a x, ty, M)
-      in (Cterm {thy_ref = thy_ref, T = ty, maxidx = 0, t = Free(y,ty)},
-          Cterm {thy_ref = thy_ref, T = S, maxidx = maxidx, t = N})
+      in (Cterm {thy_ref = thy_ref, T = ty, maxidx = 0, sorts = sorts, t = Free(y,ty)},
+          Cterm {thy_ref = thy_ref, T = S, maxidx = maxidx, sorts = sorts, t = N})
       end
   | dest_abs _ _ = raise CTERM "dest_abs";
 
 (*Makes maxidx precise: it is often too big*)
-fun adjust_maxidx (ct as Cterm {thy_ref, T, t, maxidx, ...}) =
+fun adjust_maxidx (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
   if maxidx = ~1 then ct
-  else  Cterm {thy_ref = thy_ref, T = T, maxidx = maxidx_of_term t, t = t};
+  else Cterm {thy_ref = thy_ref, t = t, T = T, maxidx = maxidx_of_term t, sorts = sorts};
 
 (*Form cterm out of a function and an argument*)
-fun capply (Cterm {t=f, thy_ref=thy_ref1, T=Type("fun",[dty,rty]), maxidx=maxidx1})
-           (Cterm {t=x, thy_ref=thy_ref2, T, maxidx=maxidx2}) =
-      if T = dty then
-        Cterm{t = f $ x,
-          thy_ref=Theory.merge_refs(thy_ref1,thy_ref2), T=rty,
-          maxidx=Int.max(maxidx1, maxidx2)}
+fun capply
+  (Cterm {t=f, thy_ref=thy_ref1, T=Type("fun",[dty,rty]), maxidx=maxidx1, sorts = sorts1})
+  (Cterm {t=x, thy_ref=thy_ref2, T, maxidx=maxidx2, sorts = sorts2}) =
+    if T = dty then
+      Cterm{t = f $ x,
+        thy_ref=Theory.merge_refs(thy_ref1,thy_ref2), T=rty,
+        maxidx=Int.max(maxidx1, maxidx2),
+        sorts = Sorts.union sorts1 sorts2}
       else raise CTERM "capply: types don't agree"
   | capply _ _ = raise CTERM "capply: first arg is not a function"
 
-fun cabs (Cterm {t=t1, thy_ref=thy_ref1, T=T1, maxidx=maxidx1})
-         (Cterm {t=t2, thy_ref=thy_ref2, T=T2, maxidx=maxidx2}) =
-      Cterm {t = lambda t1 t2, thy_ref = Theory.merge_refs (thy_ref1,thy_ref2),
-             T = T1 --> T2, maxidx=Int.max(maxidx1, maxidx2)}
-      handle TERM _ => raise CTERM "cabs: first arg is not a variable";
+fun cabs
+  (Cterm {t=t1, thy_ref=thy_ref1, T=T1, maxidx=maxidx1, sorts = sorts1})
+  (Cterm {t=t2, thy_ref=thy_ref2, T=T2, maxidx=maxidx2, sorts = sorts2}) =
+    let val t = lambda t1 t2 handle TERM _ => raise CTERM "cabs: first arg is not a variable" in
+      Cterm {t = t, T = T1 --> T2, thy_ref = Theory.merge_refs (thy_ref1, thy_ref2),
+        maxidx = Int.max (maxidx1, maxidx2), sorts = Sorts.union sorts1 sorts2}
+    end;
 
 (*Matching of cterms*)
 fun gen_cterm_match mtch
-      (Cterm {thy_ref = thy_ref1, maxidx = maxidx1, t = t1, ...},
-       Cterm {thy_ref = thy_ref2, maxidx = maxidx2, t = t2, ...}) =
+    (Cterm {thy_ref = thy_ref1, maxidx = maxidx1, t = t1, sorts = sorts1, ...},
+     Cterm {thy_ref = thy_ref2, maxidx = maxidx2, t = t2, sorts = sorts2, ...}) =
   let
     val thy_ref = Theory.merge_refs (thy_ref1, thy_ref2);
     val tsig = Sign.tsig_of (Theory.deref thy_ref);
     val (Tinsts, tinsts) = mtch tsig (t1, t2);
     val maxidx = Int.max (maxidx1, maxidx2);
+    val sorts = Sorts.union sorts1 sorts2;
     fun mk_cTinsts (ixn, (S, T)) =
       (Ctyp {thy_ref = thy_ref, T = TVar (ixn, S)},
        Ctyp {thy_ref = thy_ref, T = T});
     fun mk_ctinsts (ixn, (T, t)) =
-      let val T = Envir.typ_subst_TVars Tinsts T
-      in
-        (Cterm {thy_ref = thy_ref, maxidx = maxidx, T = T, t = Var (ixn, T)},
-         Cterm {thy_ref = thy_ref, maxidx = maxidx, T = T, t = t})
+      let val T = Envir.typ_subst_TVars Tinsts T in
+        (Cterm {thy_ref = thy_ref, maxidx = maxidx, T = T, t = Var (ixn, T), sorts = sorts},
+         Cterm {thy_ref = thy_ref, maxidx = maxidx, T = T, t = t, sorts = sorts})
       end;
-  in (map mk_cTinsts (Vartab.dest Tinsts),
-    map mk_ctinsts (Vartab.dest tinsts))
-  end;
+  in (map mk_cTinsts (Vartab.dest Tinsts), map mk_ctinsts (Vartab.dest tinsts)) end;
 
 val cterm_match = gen_cterm_match Pattern.match;
 val cterm_first_order_match = gen_cterm_match Pattern.first_order_match;
 
 (*Incrementing indexes*)
-fun cterm_incr_indexes i (ct as Cterm {thy_ref, maxidx, t, T}) =
-  if i < 0 then raise CTERM "negative increment" else
-  if i = 0 then ct else
-    Cterm {thy_ref = thy_ref, maxidx = maxidx + i,
-      t = Logic.incr_indexes ([], i) t, T = Term.incr_tvar i T};
+fun cterm_incr_indexes i (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
+  if i < 0 then raise CTERM "negative increment"
+  else if i = 0 then ct
+  else Cterm {thy_ref = thy_ref, t = Logic.incr_indexes ([], i) t,
+    T = Term.incr_tvar i T, maxidx = maxidx + i, sorts = sorts};
 
 
 
@@ -307,12 +315,13 @@
  {thy_ref: theory_ref,         (*dynamic reference to theory*)
   der: bool * Pt.proof,        (*derivation*)
   maxidx: int,                 (*maximum index of any Var or TVar*)
-  shyps: sort list,            (*sort hypotheses*)
-  hyps: term list,             (*hypotheses*)
+  shyps: sort list,            (*sort hypotheses as ordered list*)
+  hyps: term list,             (*hypotheses as ordered list*)
   tpairs: (term * term) list,  (*flex-flex pairs*)
   prop: term};                 (*conclusion*)
 
 fun terms_of_tpairs tpairs = List.concat (map (fn (t, u) => [t, u]) tpairs);
+val union_tpairs = gen_merge_lists (op = : (term * term) * (term * term) -> bool);
 
 fun attach_tpairs tpairs prop =
   Logic.list_implies (map Logic.mk_equals tpairs, prop);
@@ -327,7 +336,7 @@
 fun crep_thm (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
   let
     val thy = Theory.deref thy_ref;
-    fun cterm max t = Cterm {thy_ref = thy_ref, t = t, T = propT, maxidx = max};
+    fun cterm max t = Cterm {thy_ref = thy_ref, t = t, T = propT, maxidx = max, sorts = shyps};
   in
    {thy = thy, sign = thy, der = der, maxidx = maxidx, shyps = shyps,
     hyps = map (cterm ~1) hyps,
@@ -345,6 +354,16 @@
 fun apply_attributes (x_th, atts) = Library.apply atts x_th;
 fun applys_attributes (x_ths, atts) = foldl_map (Library.apply atts) x_ths;
 
+
+(* shyps and hyps *)
+
+val remove_hyps = OrdList.remove Term.term_ord;
+val union_hyps = OrdList.union Term.term_ord;
+val eq_set_hyps = OrdList.eq_set Term.term_ord;
+
+
+(* eq_thm(s) *)
+
 fun eq_thm (th1, th2) =
   let
     val {thy = thy1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1, prop = prop1, ...} =
@@ -352,9 +371,9 @@
     val {thy = thy2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2, prop = prop2, ...} =
       rep_thm th2;
   in
-    (subthy (thy1, thy2) orelse subthy (thy2, thy1)) andalso
-    Sorts.eq_set_sort (shyps1, shyps2) andalso
-    aconvs (hyps1, hyps2) andalso
+    Context.joinable (thy1, thy2) andalso
+    Sorts.eq_set (shyps1, shyps2) andalso
+    eq_set_hyps (hyps1, hyps2) andalso
     aconvs (terms_of_tpairs tpairs1, terms_of_tpairs tpairs2) andalso
     prop1 aconv prop2
   end;
@@ -366,13 +385,36 @@
 
 fun prop_of (Thm {prop, ...}) = prop;
 fun proof_of (Thm {der = (_, proof), ...}) = proof;
+fun tpairs_of (Thm {tpairs, ...}) = tpairs;
 
-(*merge theories of two theorems; raise exception if incompatible*)
-fun merge_thm_thys
-    (th1 as Thm {thy_ref = r1, ...}, th2 as Thm {thy_ref = r2, ...}) =
+val concl_of = Logic.strip_imp_concl o prop_of;
+val prems_of = Logic.strip_imp_prems o prop_of;
+fun nprems_of th = Logic.count_prems (prop_of th, 0);
+val no_prems = equal 0 o nprems_of;
+
+fun major_prem_of th =
+  (case prems_of th of
+    prem :: _ => Logic.strip_assums_concl prem
+  | [] => raise THM ("major_prem_of: rule with no premises", 0, [th]));
+
+(*the statement of any thm is a cterm*)
+fun cprop_of (Thm {thy_ref, maxidx, shyps, prop, ...}) =
+  Cterm {thy_ref = thy_ref, maxidx = maxidx, T = propT, t = prop, sorts = shyps};
+
+
+(* merge theories of cterms/thms; raise exception if incompatible *)
+
+fun merge_thys1
+    (Cterm {thy_ref = r1, ...}) (th as Thm {thy_ref = r2, ...}) =
+  Theory.merge_refs (r1, r2) handle TERM (msg, _) => raise THM (msg, 0, [th]);
+
+fun merge_thys2
+    (th1 as Thm {thy_ref = r1, ...}) (th2 as Thm {thy_ref = r2, ...}) =
   Theory.merge_refs (r1, r2) handle TERM (msg, _) => raise THM (msg, 0, [th1, th2]);
 
-(*transfer thm to super theory (non-destructive)*)
+
+(* explicit transfer thm to super theory *)
+
 fun transfer thy' thm =
   let
     val Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop} = thm;
@@ -385,92 +427,21 @@
     else raise THM ("transfer: not a super theory", 0, [thm])
   end;
 
-(*maps object-rule to tpairs*)
-fun tpairs_of (Thm {tpairs, ...}) = tpairs;
-
-(*maps object-rule to premises*)
-fun prems_of (Thm {prop, ...}) =
-  Logic.strip_imp_prems prop;
-
-(*counts premises in a rule*)
-fun nprems_of (Thm {prop, ...}) =
-  Logic.count_prems (prop, 0);
-
-fun major_prem_of thm =
-  (case prems_of thm of
-    prem :: _ => Logic.strip_assums_concl prem
-  | [] => raise THM ("major_prem_of: rule with no premises", 0, [thm]));
-
-fun no_prems thm = nprems_of thm = 0;
-
-(*maps object-rule to conclusion*)
-fun concl_of (Thm {prop, ...}) = Logic.strip_imp_concl prop;
-
-(*the statement of any thm is a cterm*)
-fun cprop_of (Thm {thy_ref, maxidx, prop, ...}) =
-  Cterm {thy_ref = thy_ref, maxidx = maxidx, T = propT, t = prop};
-
 
 
 (** sort contexts of theorems **)
 
-(* basic utils *)
-
-(*accumulate sorts suppressing duplicates; these are coded low levelly
-  to improve efficiency a bit*)
-
-fun add_typ_sorts (Type (_, Ts), Ss) = add_typs_sorts (Ts, Ss)
-  | add_typ_sorts (TFree (_, S), Ss) = Sorts.ins_sort(S,Ss)
-  | add_typ_sorts (TVar (_, S), Ss) = Sorts.ins_sort(S,Ss)
-and add_typs_sorts ([], Ss) = Ss
-  | add_typs_sorts (T :: Ts, Ss) = add_typs_sorts (Ts, add_typ_sorts (T, Ss));
-
-fun add_term_sorts (Const (_, T), Ss) = add_typ_sorts (T, Ss)
-  | add_term_sorts (Free (_, T), Ss) = add_typ_sorts (T, Ss)
-  | add_term_sorts (Var (_, T), Ss) = add_typ_sorts (T, Ss)
-  | add_term_sorts (Bound _, Ss) = Ss
-  | add_term_sorts (Abs (_,T,t), Ss) = add_term_sorts (t, add_typ_sorts (T,Ss))
-  | add_term_sorts (t $ u, Ss) = add_term_sorts (t, add_term_sorts (u, Ss));
-
-fun add_terms_sorts ([], Ss) = Ss
-  | add_terms_sorts (t::ts, Ss) = add_terms_sorts (ts, add_term_sorts (t,Ss));
-
-fun env_codT (Envir.Envir {iTs, ...}) = map (snd o snd) (Vartab.dest iTs);
-
-fun add_env_sorts (Envir.Envir {iTs, asol, ...}, Ss) =
-  Vartab.foldl (add_term_sorts o swap o apsnd (snd o snd))
-    (Vartab.foldl (add_typ_sorts o swap o apsnd (snd o snd)) (Ss, iTs), asol);
+fun insert_env_sorts (env as Envir.Envir {iTs, asol, ...}) =
+  Vartab.fold (fn (_, (_, t)) => Sorts.insert_term t) asol o
+  Vartab.fold (fn (_, (_, T)) => Sorts.insert_typ T) iTs;
 
-fun add_insts_sorts ((iTs, is), Ss) =
-  add_typs_sorts (map snd iTs, add_terms_sorts (map snd is, Ss));
-
-fun add_thm_sorts (Thm {hyps, tpairs, prop, ...}, Ss) =
-  add_terms_sorts (hyps @ terms_of_tpairs tpairs, add_term_sorts (prop, Ss));
-
-fun add_thms_shyps ([], Ss) = Ss
-  | add_thms_shyps (Thm {shyps, ...} :: ths, Ss) =
-      add_thms_shyps (ths, Sorts.union_sort (shyps, Ss));
-
-
-(*get 'dangling' sort constraints of a thm*)
-fun extra_shyps (th as Thm {shyps, ...}) =
-  Sorts.rems_sort (shyps, add_thm_sorts (th, []));
+fun insert_thm_sorts (Thm {hyps, tpairs, prop, ...}) =
+  fold (fn (t, u) => Sorts.insert_term t o Sorts.insert_term u) tpairs o
+  Sorts.insert_terms hyps o Sorts.insert_term prop;
 
-
-(* fix_shyps *)
-
-val all_sorts_nonempty = is_some o Sign.universal_witness o Theory.deref;
-
-(*preserve sort contexts of rule premises and substituted types*)
-fun fix_shyps thms Ts (thm as Thm {thy_ref, der, maxidx, hyps, tpairs, prop, ...}) =
-  Thm
-   {thy_ref = thy_ref,
-    der = der,             (*no new derivation, as other rules call this*)
-    maxidx = maxidx,
-    shyps =
-      if all_sorts_nonempty thy_ref then []
-      else add_thm_sorts (thm, add_typs_sorts (Ts, add_thms_shyps (thms, []))),
-    hyps = hyps, tpairs = tpairs, prop = prop}
+(*dangling sort constraints of a thm*)
+fun extra_shyps (th as Thm {shyps, ...}) =
+  Sorts.subtract (insert_thm_sorts th []) shyps;
 
 
 (* strip_shyps *)
@@ -480,12 +451,12 @@
   | strip_shyps (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
       let
         val thy = Theory.deref thy_ref;
-        val present_sorts = add_thm_sorts (thm, []);
-        val extra_shyps = Sorts.rems_sort (shyps, present_sorts);
+        val present_sorts = insert_thm_sorts thm [];
+        val extra_shyps = Sorts.subtract present_sorts shyps;
         val witnessed_shyps = Sign.witness_sorts thy present_sorts extra_shyps;
       in
         Thm {thy_ref = thy_ref, der = der, maxidx = maxidx,
-             shyps = Sorts.rems_sort (shyps, map #2 witnessed_shyps),
+             shyps = Sorts.subtract (map #2 witnessed_shyps) shyps,
              hyps = hyps, tpairs = tpairs, prop = prop}
       end;
 
@@ -498,15 +469,14 @@
   let
     fun get_ax thy =
       Symtab.lookup (#2 (#axioms (Theory.rep_theory thy)), name)
-      |> Option.map (fn t =>
-          fix_shyps [] []
-            (Thm {thy_ref = Theory.self_ref thy,
-              der = Pt.infer_derivs' I (false, Pt.axm_proof name t),
-              maxidx = maxidx_of_term t,
-              shyps = [],
-              hyps = [],
-              tpairs = [],
-              prop = t}));
+      |> Option.map (fn prop =>
+          Thm {thy_ref = Theory.self_ref thy,
+            der = Pt.infer_derivs' I (false, Pt.axm_proof name prop),
+            maxidx = maxidx_of_term prop,
+            shyps = Sorts.insert_term prop [],
+            hyps = [],
+            tpairs = [],
+            prop = prop});
   in
     (case get_first get_ax (theory :: Theory.ancestors_of theory) of
       SOME thm => thm
@@ -559,26 +529,22 @@
 
 (*** Meta rules ***)
 
-(** 'primitive' rules **)
-
-(*discharge all assumptions t from ts*)
-val disch = gen_rem (op aconv);
+(** primitive rules **)
 
-(*The assumption rule A|-A in a theory*)
-fun assume raw_ct : thm =
-  let val ct as Cterm {thy_ref, t=prop, T, maxidx} = adjust_maxidx raw_ct
-  in  if T<>propT then
-        raise THM("assume: assumptions must have type prop", 0, [])
-      else if maxidx <> ~1 then
-        raise THM("assume: assumptions may not contain scheme variables",
-                  maxidx, [])
-      else Thm{thy_ref   = thy_ref,
-               der    = Pt.infer_derivs' I (false, Pt.Hyp prop),
-               maxidx = ~1,
-               shyps  = add_term_sorts(prop,[]),
-               hyps   = [prop],
-               tpairs = [],
-               prop   = prop}
+(*The assumption rule A |- A in a theory*)
+fun assume raw_ct =
+  let val Cterm {thy_ref, t = prop, T, maxidx, sorts} = adjust_maxidx raw_ct in
+    if T <> propT then
+      raise THM ("assume: assumptions must have type prop", 0, [])
+    else if maxidx <> ~1 then
+      raise THM ("assume: assumptions may not contain schematic variables", maxidx, [])
+    else Thm {thy_ref = thy_ref,
+      der = Pt.infer_derivs' I (false, Pt.Hyp prop),
+      maxidx = ~1,
+      shyps = sorts,
+      hyps = [prop],
+      tpairs = [],
+      prop = prop}
   end;
 
 (*Implication introduction
@@ -588,21 +554,19 @@
   -------
   A ==> B
 *)
-fun implies_intr cA (thB as Thm{thy_ref,der,maxidx,hyps,shyps,tpairs,prop}) : thm =
-  let val Cterm {thy_ref=thy_refA, t=A, T, maxidx=maxidxA} = cA
-  in  if T<>propT then
-        raise THM("implies_intr: assumptions must have type prop", 0, [thB])
-      else
-         Thm{thy_ref = Theory.merge_refs (thy_ref,thy_refA),
-             der = Pt.infer_derivs' (Pt.implies_intr_proof A) der,
-             maxidx = Int.max(maxidxA, maxidx),
-             shyps = add_term_sorts (A, shyps),
-             hyps = disch(hyps,A),
-             tpairs = tpairs,
-             prop = implies$A$prop}
-      handle TERM _ =>
-        raise THM("implies_intr: incompatible theories", 0, [thB])
-  end;
+fun implies_intr
+    (ct as Cterm {thy_ref = thy_refA, t = A, T, maxidx = maxidxA, sorts})
+    (th as Thm {thy_ref, der, maxidx, hyps, shyps, tpairs, prop}) =
+  if T <> propT then
+    raise THM ("implies_intr: assumptions must have type prop", 0, [th])
+  else
+    Thm {thy_ref = merge_thys1 ct th,
+      der = Pt.infer_derivs' (Pt.implies_intr_proof A) der,
+      maxidx = Int.max (maxidxA, maxidx),
+      shyps = Sorts.union sorts shyps,
+      hyps = remove_hyps A hyps,
+      tpairs = tpairs,
+      prop = implies $ A $ prop};
 
 
 (*Implication elimination
@@ -610,48 +574,55 @@
   ------------
         B
 *)
-fun implies_elim thAB thA : thm =
-    let val Thm{maxidx=maxA, der=derA, hyps=hypsA, shyps=shypsA, tpairs=tpairsA, prop=propA, ...} = thA
-        and Thm{der, maxidx, hyps, shyps, tpairs, prop, ...} = thAB;
-        fun err(a) = raise THM("implies_elim: "^a, 0, [thAB,thA])
-    in  case prop of
-            imp$A$B =>
-                if imp=implies andalso  A aconv propA
-                then
-                  Thm{thy_ref= merge_thm_thys (thAB, thA),
-                      der = Pt.infer_derivs (curry Pt.%%) der derA,
-                      maxidx = Int.max(maxA,maxidx),
-                      shyps = Sorts.union_sort (shypsA, shyps),
-                      hyps = union_term(hypsA,hyps),  (*dups suppressed*)
-                      tpairs = tpairsA @ tpairs,
-                      prop = B}
-                else err("major premise")
-          | _ => err("major premise")
-    end;
+fun implies_elim thAB thA =
+  let
+    val Thm {maxidx = maxA, der = derA, hyps = hypsA, shyps = shypsA, tpairs = tpairsA,
+      prop = propA, ...} = thA
+    and Thm {der, maxidx, hyps, shyps, tpairs, prop, ...} = thAB;
+    fun err () = raise THM ("implies_elim: major premise", 0, [thAB, thA]);
+  in
+    case prop of
+      imp $ A $ B =>
+        if imp = Term.implies andalso A aconv propA then
+          Thm {thy_ref= merge_thys2 thAB thA,
+            der = Pt.infer_derivs (curry Pt.%%) der derA,
+            maxidx = Int.max (maxA, maxidx),
+            shyps = Sorts.union shypsA shyps,
+            hyps = union_hyps hypsA hyps,
+            tpairs = union_tpairs tpairsA tpairs,
+            prop = B}
+        else err ()
+    | _ => err ()
+  end;
 
 (*Forall introduction.  The Free or Var x must not be free in the hypotheses.
+   [x]
+    :
     A
   -----
   !!x.A
 *)
-fun forall_intr cx (th as Thm{thy_ref,der,maxidx,hyps,tpairs,prop,...}) =
-  let val x = term_of cx;
-      fun result a T = fix_shyps [th] []
-        (Thm{thy_ref = thy_ref,
-             der = Pt.infer_derivs' (Pt.forall_intr_proof x a) der,
-             maxidx = maxidx,
-             shyps = [],
-             hyps = hyps,
-             tpairs = tpairs,
-             prop = all(T) $ Abs(a, T, abstract_over (x,prop))})
-      fun check_occs x ts =
-        if exists (apl(x, Logic.occs)) ts
-        then raise THM("forall_intr: variable free in assumptions", 0, [th])
-        else ()
-  in  case x of
-        Free(a,T) => (check_occs x (hyps @ terms_of_tpairs tpairs); result a T)
-      | Var((a,_),T) => (check_occs x (terms_of_tpairs tpairs); result a T)
-      | _ => raise THM("forall_intr: not a variable", 0, [th])
+fun forall_intr
+    (ct as Cterm {t = x, T, sorts, ...})
+    (th as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
+  let
+    fun result a =
+      Thm {thy_ref = merge_thys1 ct th,
+        der = Pt.infer_derivs' (Pt.forall_intr_proof x a) der,
+        maxidx = maxidx,
+        shyps = Sorts.union sorts shyps,
+        hyps = hyps,
+        tpairs = tpairs,
+        prop = all T $ Abs (a, T, abstract_over (x, prop))};
+    fun check_occs x ts =
+      if exists (apl (x, Logic.occs)) ts then
+        raise THM("forall_intr: variable free in assumptions", 0, [th])
+      else ();
+  in
+    case x of
+      Free (a, _) => (check_occs x hyps; check_occs x (terms_of_tpairs tpairs); result a)
+    | Var ((a, _), _) => (check_occs x (terms_of_tpairs tpairs); result a)
+    | _ => raise THM ("forall_intr: not a variable", 0, [th])
   end;
 
 (*Forall elimination
@@ -659,224 +630,227 @@
   ------
   A[t/x]
 *)
-fun forall_elim ct (th as Thm{thy_ref,der,maxidx,hyps,tpairs,prop,...}) : thm =
-  let val Cterm {thy_ref=thy_reft, t, T, maxidx=maxt} = ct
-  in  case prop of
-        Const("all",Type("fun",[Type("fun",[qary,_]),_])) $ A =>
-          if T<>qary then
-              raise THM("forall_elim: type mismatch", 0, [th])
-          else fix_shyps [th] []
-                    (Thm{thy_ref= Theory.merge_refs(thy_ref,thy_reft),
-                         der = Pt.infer_derivs' (Pt.% o rpair (SOME t)) der,
-                         maxidx = Int.max(maxidx, maxt),
-                         shyps = [],
-                         hyps = hyps,
-                         tpairs = tpairs,
-                         prop = betapply(A,t)})
-      | _ => raise THM("forall_elim: not quantified", 0, [th])
-  end
-  handle TERM _ =>
-         raise THM("forall_elim: incompatible theories", 0, [th]);
+fun forall_elim
+    (ct as Cterm {t, T, maxidx = maxt, sorts, ...})
+    (th as Thm {der, maxidx, shyps, hyps, tpairs, prop, ...}) =
+  (case prop of
+    Const ("all", Type ("fun", [Type ("fun", [qary, _]), _])) $ A =>
+      if T <> qary then
+        raise THM ("forall_elim: type mismatch", 0, [th])
+      else
+        Thm {thy_ref = merge_thys1 ct th,
+          der = Pt.infer_derivs' (Pt.% o rpair (SOME t)) der,
+          maxidx = Int.max (maxidx, maxt),
+          shyps = Sorts.union sorts shyps,
+          hyps = hyps,
+          tpairs = tpairs,
+          prop = Term.betapply (A, t)}
+  | _ => raise THM ("forall_elim: not quantified", 0, [th]));
 
 
 (* Equality *)
 
-(*The reflexivity rule: maps  t   to the theorem   t==t   *)
-fun reflexive ct =
-  let val Cterm {thy_ref, t, T, maxidx} = ct
-  in Thm{thy_ref= thy_ref,
-         der = Pt.infer_derivs' I (false, Pt.reflexive),
-         shyps = add_term_sorts (t, []),
-         hyps = [],
-         maxidx = maxidx,
-         tpairs = [],
-         prop = Logic.mk_equals(t,t)}
-  end;
+(*Reflexivity
+  t == t
+*)
+fun reflexive (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
+  Thm {thy_ref= thy_ref,
+    der = Pt.infer_derivs' I (false, Pt.reflexive),
+    maxidx = maxidx,
+    shyps = sorts,
+    hyps = [],
+    tpairs = [],
+    prop = Logic.mk_equals (t, t)};
 
-(*The symmetry rule
-  t==u
-  ----
-  u==t
+(*Symmetry
+  t == u
+  ------
+  u == t
 *)
-fun symmetric (th as Thm{thy_ref,der,maxidx,shyps,hyps,tpairs,prop}) =
-  case prop of
-      (eq as Const("==", Type (_, [T, _]))) $ t $ u =>
-        (*no fix_shyps*)
-          Thm{thy_ref = thy_ref,
-              der = Pt.infer_derivs' Pt.symmetric der,
-              maxidx = maxidx,
-              shyps = shyps,
-              hyps = hyps,
-              tpairs = tpairs,
-              prop = eq$u$t}
-    | _ => raise THM("symmetric", 0, [th]);
+fun symmetric (th as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
+  (case prop of
+    (eq as Const ("==", Type (_, [T, _]))) $ t $ u =>
+      Thm {thy_ref = thy_ref,
+        der = Pt.infer_derivs' Pt.symmetric der,
+        maxidx = maxidx,
+        shyps = shyps,
+        hyps = hyps,
+        tpairs = tpairs,
+        prop = eq $ u $ t}
+    | _ => raise THM ("symmetric", 0, [th]));
 
-(*The transitive rule
-  t1==u    u==t2
-  --------------
-      t1==t2
+(*Transitivity
+  t1 == u    u == t2
+  ------------------
+       t1 == t2
 *)
 fun transitive th1 th2 =
-  let val Thm{der=der1, maxidx=max1, hyps=hyps1, shyps=shyps1, tpairs=tpairs1, prop=prop1,...} = th1
-      and Thm{der=der2, maxidx=max2, hyps=hyps2, shyps=shyps2, tpairs=tpairs2, prop=prop2,...} = th2;
-      fun err msg = raise THM("transitive: "^msg, 0, [th1,th2])
-  in case (prop1,prop2) of
-       ((eq as Const("==", Type (_, [T, _]))) $ t1 $ u, Const("==",_) $ u' $ t2) =>
-          if not (u aconv u') then err"middle term"
-          else
-                 Thm{thy_ref= merge_thm_thys (th1, th2),
-                     der = Pt.infer_derivs (Pt.transitive u T) der1 der2,
-                     maxidx = Int.max(max1,max2),
-                     shyps = Sorts.union_sort (shyps1, shyps2),
-                     hyps = union_term(hyps1,hyps2),
-                     tpairs = tpairs1 @ tpairs2,
-                     prop = eq$t1$t2}
-     | _ =>  err"premises"
+  let
+    val Thm {der = der1, maxidx = max1, hyps = hyps1, shyps = shyps1, tpairs = tpairs1,
+      prop = prop1, ...} = th1
+    and Thm {der = der2, maxidx = max2, hyps = hyps2, shyps = shyps2, tpairs = tpairs2,
+      prop = prop2, ...} = th2;
+    fun err msg = raise THM ("transitive: " ^ msg, 0, [th1, th2]);
+  in
+    case (prop1, prop2) of
+      ((eq as Const ("==", Type (_, [T, _]))) $ t1 $ u, Const ("==", _) $ u' $ t2) =>
+        if not (u aconv u') then err "middle term"
+        else
+          Thm {thy_ref= merge_thys2 th1 th2,
+            der = Pt.infer_derivs (Pt.transitive u T) der1 der2,
+            maxidx = Int.max (max1, max2),
+            shyps = Sorts.union shyps1 shyps2,
+            hyps = union_hyps hyps1 hyps2,
+            tpairs = union_tpairs tpairs1 tpairs2,
+            prop = eq $ t1 $ t2}
+     | _ =>  err "premises"
   end;
 
-(*Beta-conversion: maps (%x.t)(u) to the theorem (%x.t)(u) == t[u/x]
-  Fully beta-reduces the term if full=true
+(*Beta-conversion
+  (%x.t)(u) == t[u/x]
+  fully beta-reduces the term if full = true
 *)
-fun beta_conversion full ct =
-  let val Cterm {thy_ref, t, T, maxidx} = ct
-  in Thm
-    {thy_ref = thy_ref,
-     der = Pt.infer_derivs' I (false, Pt.reflexive),
-     maxidx = maxidx,
-     shyps = add_term_sorts (t, []),
-     hyps = [],
-     tpairs = [],
-     prop = Logic.mk_equals (t, if full then Envir.beta_norm t
-       else case t of
-          Abs(_, _, bodt) $ u => subst_bound (u, bodt)
-        | _ => raise THM ("beta_conversion: not a redex", 0, []))}
+fun beta_conversion full (Cterm {thy_ref, t, T, maxidx, sorts}) =
+  let val t' =
+    if full then Envir.beta_norm t
+    else
+      (case t of Abs (_, _, bodt) $ u => subst_bound (u, bodt)
+      | _ => raise THM ("beta_conversion: not a redex", 0, []));
+  in
+    Thm {thy_ref = thy_ref,
+      der = Pt.infer_derivs' I (false, Pt.reflexive),
+      maxidx = maxidx,
+      shyps = sorts,
+      hyps = [],
+      tpairs = [],
+      prop = Logic.mk_equals (t, t')}
   end;
 
-fun eta_conversion ct =
-  let val Cterm {thy_ref, t, T, maxidx} = ct
-  in Thm
-    {thy_ref = thy_ref,
-     der = Pt.infer_derivs' I (false, Pt.reflexive),
-     maxidx = maxidx,
-     shyps = add_term_sorts (t, []),
-     hyps = [],
-     tpairs = [],
-     prop = Logic.mk_equals (t, Pattern.eta_contract t)}
-  end;
+fun eta_conversion (Cterm {thy_ref, t, T, maxidx, sorts}) =
+  Thm {thy_ref = thy_ref,
+    der = Pt.infer_derivs' I (false, Pt.reflexive),
+    maxidx = maxidx,
+    shyps = sorts,
+    hyps = [],
+    tpairs = [],
+    prop = Logic.mk_equals (t, Pattern.eta_contract t)};
 
 (*The abstraction rule.  The Free or Var x must not be free in the hypotheses.
   The bound variable will be named "a" (since x will be something like x320)
-     t == u
-  ------------
-  %x.t == %x.u
+      t == u
+  --------------
+  %x. t == %x. u
 *)
-fun abstract_rule a cx (th as Thm{thy_ref,der,maxidx,hyps,shyps,tpairs,prop}) =
-  let val x = term_of cx;
-      val (t,u) = Logic.dest_equals prop
-            handle TERM _ =>
-                raise THM("abstract_rule: premise not an equality", 0, [th])
-      fun result T =
-           Thm{thy_ref = thy_ref,
-               der = Pt.infer_derivs' (Pt.abstract_rule x a) der,
-               maxidx = maxidx,
-               shyps = add_typ_sorts (T, shyps),
-               hyps = hyps,
-               tpairs = tpairs,
-               prop = Logic.mk_equals(Abs(a, T, abstract_over (x,t)),
-                                      Abs(a, T, abstract_over (x,u)))}
-      fun check_occs x ts =
-         if exists (apl(x, Logic.occs)) ts
-         then raise THM("abstract_rule: variable free in assumptions", 0, [th])
-         else ()
-  in  case x of
-        Free(_,T) => (check_occs x (hyps @ terms_of_tpairs tpairs); result T)
-      | Var(_,T) => (check_occs x (terms_of_tpairs tpairs); result T)
-      | _ => raise THM("abstract_rule: not a variable", 0, [th])
+fun abstract_rule a
+    (Cterm {t = x, T, sorts, ...})
+    (th as Thm {thy_ref, der, maxidx, hyps, shyps, tpairs, prop}) =
+  let
+    val (t, u) = Logic.dest_equals prop
+      handle TERM _ => raise THM ("abstract_rule: premise not an equality", 0, [th]);
+    val result =
+      Thm {thy_ref = thy_ref,
+        der = Pt.infer_derivs' (Pt.abstract_rule x a) der,
+        maxidx = maxidx,
+        shyps = Sorts.union sorts shyps,
+        hyps = hyps,
+        tpairs = tpairs,
+        prop = Logic.mk_equals
+          (Abs (a, T, abstract_over (x, t)), Abs (a, T, abstract_over (x, u)))};
+    fun check_occs x ts =
+      if exists (apl (x, Logic.occs)) ts then
+        raise THM ("abstract_rule: variable free in assumptions", 0, [th])
+      else ();
+  in
+    case x of
+      Free _ => (check_occs x hyps; check_occs x (terms_of_tpairs tpairs); result)
+    | Var _ => (check_occs x (terms_of_tpairs tpairs); result)
+    | _ => raise THM ("abstract_rule: not a variable", 0, [th])
   end;
 
 (*The combination rule
   f == g  t == u
   --------------
-   f(t) == g(u)
+    f t == g u
 *)
 fun combination th1 th2 =
-  let val Thm{der=der1, maxidx=max1, shyps=shyps1, hyps=hyps1,
-              tpairs=tpairs1, prop=prop1,...} = th1
-      and Thm{der=der2, maxidx=max2, shyps=shyps2, hyps=hyps2,
-              tpairs=tpairs2, prop=prop2,...} = th2
-      fun chktypes fT tT =
-            (case fT of
-                Type("fun",[T1,T2]) =>
-                    if T1 <> tT then
-                         raise THM("combination: types", 0, [th1,th2])
-                    else ()
-                | _ => raise THM("combination: not function type", 0,
-                                 [th1,th2]))
-  in case (prop1,prop2)  of
-       (Const ("==", Type ("fun", [fT, _])) $ f $ g,
-        Const ("==", Type ("fun", [tT, _])) $ t $ u) =>
-          (chktypes fT tT;
-                        (*no fix_shyps*)
-                        Thm{thy_ref = merge_thm_thys(th1,th2),
-                            der = Pt.infer_derivs
-                              (Pt.combination f g t u fT) der1 der2,
-                            maxidx = Int.max(max1,max2),
-                            shyps = Sorts.union_sort(shyps1,shyps2),
-                            hyps = union_term(hyps1,hyps2),
-                            tpairs = tpairs1 @ tpairs2,
-                            prop = Logic.mk_equals(f$t, g$u)})
-     | _ =>  raise THM("combination: premises", 0, [th1,th2])
+  let
+    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1,
+      prop = prop1, ...} = th1
+    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2,
+      prop = prop2, ...} = th2;
+    fun chktypes fT tT =
+      (case fT of
+        Type ("fun", [T1, T2]) =>
+          if T1 <> tT then
+            raise THM ("combination: types", 0, [th1, th2])
+          else ()
+      | _ => raise THM ("combination: not function type", 0, [th1, th2]));
+  in
+    case (prop1, prop2) of
+      (Const ("==", Type ("fun", [fT, _])) $ f $ g,
+       Const ("==", Type ("fun", [tT, _])) $ t $ u) =>
+        (chktypes fT tT;
+          Thm {thy_ref = merge_thys2 th1 th2,
+            der = Pt.infer_derivs (Pt.combination f g t u fT) der1 der2,
+            maxidx = Int.max (max1, max2),
+            shyps = Sorts.union shyps1 shyps2,
+            hyps = union_hyps hyps1 hyps2,
+            tpairs = union_tpairs tpairs1 tpairs2,
+            prop = Logic.mk_equals (f $ t, g $ u)})
+     | _ => raise THM ("combination: premises", 0, [th1, th2])
   end;
 
-
-(* Equality introduction
+(*Equality introduction
   A ==> B  B ==> A
   ----------------
        A == B
 *)
 fun equal_intr th1 th2 =
-  let val Thm{der=der1, maxidx=max1, shyps=shyps1, hyps=hyps1,
-              tpairs=tpairs1, prop=prop1,...} = th1
-      and Thm{der=der2, maxidx=max2, shyps=shyps2, hyps=hyps2,
-              tpairs=tpairs2, prop=prop2,...} = th2;
-      fun err(msg) = raise THM("equal_intr: "^msg, 0, [th1,th2])
-  in case (prop1,prop2) of
-       (Const("==>",_) $ A $ B, Const("==>",_) $ B' $ A')  =>
-          if A aconv A' andalso B aconv B'
-          then
-            (*no fix_shyps*)
-              Thm{thy_ref = merge_thm_thys(th1,th2),
-                  der = Pt.infer_derivs (Pt.equal_intr A B) der1 der2,
-                  maxidx = Int.max(max1,max2),
-                  shyps = Sorts.union_sort(shyps1,shyps2),
-                  hyps = union_term(hyps1,hyps2),
-                  tpairs = tpairs1 @ tpairs2,
-                  prop = Logic.mk_equals(A,B)}
-          else err"not equal"
-     | _ =>  err"premises"
+  let
+    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1,
+      prop = prop1, ...} = th1
+    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2,
+      prop = prop2, ...} = th2;
+    fun err msg = raise THM ("equal_intr: " ^ msg, 0, [th1, th2]);
+  in
+    case (prop1, prop2) of
+      (Const("==>", _) $ A $ B, Const("==>", _) $ B' $ A') =>
+        if A aconv A' andalso B aconv B' then
+          Thm {thy_ref = merge_thys2 th1 th2,
+            der = Pt.infer_derivs (Pt.equal_intr A B) der1 der2,
+            maxidx = Int.max (max1, max2),
+            shyps = Sorts.union shyps1 shyps2,
+            hyps = union_hyps hyps1 hyps2,
+            tpairs = union_tpairs tpairs1 tpairs2,
+            prop = Logic.mk_equals (A, B)}
+        else err "not equal"
+    | _ =>  err "premises"
   end;
 
-
 (*The equal propositions rule
   A == B  A
   ---------
       B
 *)
 fun equal_elim th1 th2 =
-  let val Thm{der=der1, maxidx=max1, hyps=hyps1, tpairs=tpairs1, prop=prop1,...} = th1
-      and Thm{der=der2, maxidx=max2, hyps=hyps2, tpairs=tpairs2, prop=prop2,...} = th2;
-      fun err(msg) = raise THM("equal_elim: "^msg, 0, [th1,th2])
-  in  case prop1  of
-       Const("==",_) $ A $ B =>
-          if not (prop2 aconv A) then err"not equal"  else
-            fix_shyps [th1, th2] []
-              (Thm{thy_ref= merge_thm_thys(th1,th2),
-                   der = Pt.infer_derivs (Pt.equal_elim A B) der1 der2,
-                   maxidx = Int.max(max1,max2),
-                   shyps = [],
-                   hyps = union_term(hyps1,hyps2),
-                   tpairs = tpairs1 @ tpairs2,
-                   prop = B})
+  let
+    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1,
+      tpairs = tpairs1, prop = prop1, ...} = th1
+    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2,
+      tpairs = tpairs2, prop = prop2, ...} = th2;
+    fun err msg = raise THM ("equal_elim: " ^ msg, 0, [th1, th2]);
+  in
+    case prop1 of
+      Const ("==", _) $ A $ B =>
+        if prop2 aconv A then
+          Thm {thy_ref = merge_thys2 th1 th2,
+            der = Pt.infer_derivs (Pt.equal_elim A B) der1 der2,
+            maxidx = Int.max (max1, max2),
+            shyps = Sorts.union shyps1 shyps2,
+            hyps = union_hyps hyps1 hyps2,
+            tpairs = union_tpairs tpairs1 tpairs2,
+            prop = B}
+        else err "not equal"
      | _ =>  err"major premise"
   end;
 
@@ -884,84 +858,71 @@
 
 (**** Derived rules ****)
 
-(*Discharge all hypotheses.  Need not verify cterms or call fix_shyps.
-  Repeated hypotheses are discharged only once;  fold cannot do this*)
-fun implies_intr_hyps (Thm{thy_ref, der, maxidx, shyps, hyps=A::As, tpairs, prop}) =
-      implies_intr_hyps (*no fix_shyps*)
-            (Thm{thy_ref = thy_ref,
-                 der = Pt.infer_derivs' (Pt.implies_intr_proof A) der,
-                 maxidx = maxidx,
-                 shyps = shyps,
-                 hyps = disch(As,A),
-                 tpairs = tpairs,
-                 prop = implies$A$prop})
-  | implies_intr_hyps th = th;
-
-(*Smash" unifies the list of term pairs leaving no flex-flex pairs.
+(*Smash unifies the list of term pairs leaving no flex-flex pairs.
   Instantiates the theorem and deletes trivial tpairs.
   Resulting sequence may contain multiple elements if the tpairs are
     not all flex-flex. *)
-fun flexflex_rule (th as Thm{thy_ref, der, maxidx, hyps, tpairs, prop, ...}) =
-  let fun newthm env =
-          if Envir.is_empty env then th
-          else
-          let val ntpairs = map (pairself (Envir.norm_term env)) tpairs;
-              val newprop = Envir.norm_term env prop;
-                (*Remove trivial tpairs, of the form t=t*)
-              val distpairs = List.filter (not o op aconv) ntpairs
-          in  fix_shyps [th] (env_codT env)
-                (Thm{thy_ref = thy_ref,
-                     der = Pt.infer_derivs' (Pt.norm_proof' env) der,
-                     maxidx = maxidx_of_terms (newprop ::
-                       terms_of_tpairs distpairs),
-                     shyps = [],
-                     hyps = hyps,
-                     tpairs = distpairs,
-                     prop = newprop})
-          end;
-  in Seq.map newthm
-            (Unify.smash_unifiers(Theory.deref thy_ref, Envir.empty maxidx, tpairs))
-  end;
+fun flexflex_rule (th as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
+  Unify.smash_unifiers (Theory.deref thy_ref, Envir.empty maxidx, tpairs)
+  |> Seq.map (fn env =>
+      if Envir.is_empty env then th
+      else
+        let
+          val tpairs' = tpairs |> map (pairself (Envir.norm_term env))
+            (*remove trivial tpairs, of the form t==t*)
+            |> List.filter (not o op aconv);
+          val prop' = Envir.norm_term env prop;
+        in
+          Thm {thy_ref = thy_ref,
+            der = Pt.infer_derivs' (Pt.norm_proof' env) der,
+            maxidx = maxidx_of_terms (prop' :: terms_of_tpairs tpairs'),
+            shyps = insert_env_sorts env shyps,
+            hyps = hyps,
+            tpairs = tpairs',
+            prop = prop'}
+        end);
+
 
 (*Instantiation of Vars
-           A
-  -------------------
-  A[t1/v1,....,tn/vn]
+            A
+  ---------------------
+  A[t1/v1, ...., tn/vn]
 *)
 
 local
 
 (*Check that all the terms are Vars and are distinct*)
-fun instl_ok ts = forall is_Var ts andalso null(findrep ts);
+fun instl_ok ts = forall is_Var ts andalso null (findrep ts);
 
 fun pretty_typing thy t T =
   Pretty.block [Sign.pretty_term thy t, Pretty.str " ::", Pretty.brk 1, Sign.pretty_typ thy T];
 
 (*For instantiate: process pair of cterms, merge theories*)
-fun add_ctpair ((ct,cu), (thy_ref,tpairs)) =
+fun add_ctpair ((ct, cu), (thy_ref, tpairs)) =
   let
-    val Cterm {thy_ref=thy_reft, t=t, T= T, ...} = ct
-    and Cterm {thy_ref=thy_refu, t=u, T= U, ...} = cu;
+    val Cterm {thy_ref = thy_reft, t = t, T = T, ...} = ct
+    and Cterm {thy_ref = thy_refu, t = u, T = U, ...} = cu;
     val thy_ref_merged = Theory.merge_refs (thy_ref, Theory.merge_refs (thy_reft, thy_refu));
     val thy_merged = Theory.deref thy_ref_merged;
   in
-    if T=U then (thy_ref_merged, (t,u)::tpairs)
-    else raise TYPE (Pretty.string_of (Pretty.block [Pretty.str "instantiate: type conflict",
+    if T = U then (thy_ref_merged, (t, u) :: tpairs)
+    else raise TYPE (Pretty.string_of (Pretty.block
+     [Pretty.str "instantiate: type conflict",
       Pretty.fbrk, pretty_typing thy_merged t T,
       Pretty.fbrk, pretty_typing thy_merged u U]), [T,U], [t,u])
   end;
 
-fun add_ctyp ((Ctyp {T = T as TVar (_, S), thy_ref = thy_refT},
-      Ctyp {T = U, thy_ref = thy_refU}), (thy_ref, vTs)) =
+fun add_ctyp
+  ((Ctyp {T = T as TVar (_, S), thy_ref = thy_refT},
+    Ctyp {T = U, thy_ref = thy_refU}), (thy_ref, vTs)) =
       let
         val thy_ref_merged = Theory.merge_refs
           (thy_ref, Theory.merge_refs (thy_refT, thy_refU));
-        val thy_merged = Theory.deref thy_ref_merged
+        val thy_merged = Theory.deref thy_ref_merged;
       in
         if Type.of_sort (Sign.tsig_of thy_merged) (U, S) then
           (thy_ref_merged, (T, U) :: vTs)
-        else raise TYPE ("Type not of sort " ^
-          Sign.string_of_sort thy_merged S, [U], [])
+        else raise TYPE ("Type not of sort " ^ Sign.string_of_sort thy_merged S, [U], [])
       end
   | add_ctyp ((Ctyp {T, thy_ref}, _), _) =
       raise TYPE (Pretty.string_of (Pretty.block
@@ -970,105 +931,103 @@
 
 in
 
-(*Left-to-right replacements: ctpairs = [...,(vi,ti),...].
+(*Left-to-right replacements: ctpairs = [..., (vi, ti), ...].
   Instantiates distinct Vars by terms of same type.
-  No longer normalizes the new theorem! *)
+  Does NOT normalize the resulting theorem!*)
 fun instantiate ([], []) th = th
-  | instantiate (vcTs,ctpairs) (th as Thm{thy_ref,der,maxidx,hyps,shyps,tpairs=dpairs,prop}) =
-  let val (newthy_ref,tpairs) = foldr add_ctpair (thy_ref,[]) ctpairs;
-      val (newthy_ref,vTs) = foldr add_ctyp (newthy_ref,[]) vcTs;
-      fun subst t =
-        subst_atomic tpairs (map_term_types (typ_subst_atomic vTs) t);
-      val newprop = subst prop;
-      val newdpairs = map (pairself subst) dpairs;
-      val newth =
-            (Thm{thy_ref = newthy_ref,
-                 der = Pt.infer_derivs' (Pt.instantiate vTs tpairs) der,
-                 maxidx = maxidx_of_terms (newprop ::
-                   terms_of_tpairs newdpairs),
-                 shyps = add_insts_sorts ((vTs, tpairs), shyps),
-                 hyps = hyps,
-                 tpairs = newdpairs,
-                 prop = newprop})
-  in  if not(instl_ok(map #1 tpairs))
-      then raise THM("instantiate: variables not distinct", 0, [th])
-      else if not(null(findrep(map #1 vTs)))
-      then raise THM("instantiate: type variables not distinct", 0, [th])
-      else newth
+  | instantiate (vcTs, ctpairs) th =
+  let
+    val Thm {thy_ref, der, maxidx, hyps, shyps, tpairs = dpairs, prop} = th;
+    val (newthy_ref, tpairs) = foldr add_ctpair (thy_ref, []) ctpairs;
+    val (newthy_ref, vTs) = foldr add_ctyp (newthy_ref, []) vcTs;
+    fun subst t = subst_atomic tpairs (map_term_types (typ_subst_atomic vTs) t);
+    val newprop = subst prop;
+    val newdpairs = map (pairself subst) dpairs;
+    val newth =
+      Thm {thy_ref = newthy_ref,
+        der = Pt.infer_derivs' (Pt.instantiate vTs tpairs) der,
+        maxidx = maxidx_of_terms (newprop :: terms_of_tpairs newdpairs),
+        shyps = shyps
+          |> fold (Sorts.insert_typ o #2) vTs
+          |> fold (Sorts.insert_term o #2) tpairs,
+        hyps = hyps,
+        tpairs = newdpairs,
+        prop = newprop};
+  in
+    if not (instl_ok (map #1 tpairs)) then
+      raise THM ("instantiate: variables not distinct", 0, [th])
+    else if not (null (findrep (map #1 vTs))) then
+      raise THM ("instantiate: type variables not distinct", 0, [th])
+    else newth
   end
-  handle TERM _ => raise THM("instantiate: incompatible theories", 0, [th])
-       | TYPE (msg, _, _) => raise THM (msg, 0, [th]);
+  handle TYPE (msg, _, _) => raise THM (msg, 0, [th]);
 
 end;
 
 
-(*The trivial implication A==>A, justified by assume and forall rules.
-  A can contain Vars, not so for assume!   *)
-fun trivial ct : thm =
-  let val Cterm {thy_ref, t=A, T, maxidx} = ct
-  in  if T<>propT then
-            raise THM("trivial: the term must have type prop", 0, [])
-      else fix_shyps [] []
-        (Thm{thy_ref = thy_ref,
-             der = Pt.infer_derivs' I (false, Pt.AbsP ("H", NONE, Pt.PBound 0)),
-             maxidx = maxidx,
-             shyps = [],
-             hyps = [],
-             tpairs = [],
-             prop = implies$A$A})
-  end;
+(*The trivial implication A ==> A, justified by assume and forall rules.
+  A can contain Vars, not so for assume!*)
+fun trivial (Cterm {thy_ref, t =A, T, maxidx, sorts}) =
+  if T <> propT then
+    raise THM ("trivial: the term must have type prop", 0, [])
+  else
+    Thm {thy_ref = thy_ref,
+      der = Pt.infer_derivs' I (false, Pt.AbsP ("H", NONE, Pt.PBound 0)),
+      maxidx = maxidx,
+      shyps = sorts,
+      hyps = [],
+      tpairs = [],
+      prop = implies $ A $ A};
 
 (*Axiom-scheme reflecting signature contents: "OFCLASS(?'a::c, c_class)" *)
 fun class_triv thy c =
-  let val Cterm {thy_ref, t, maxidx, ...} =
+  let val Cterm {thy_ref, t, maxidx, sorts, ...} =
     cterm_of thy (Logic.mk_inclass (TVar (("'a", 0), [c]), c))
       handle TERM (msg, _) => raise THM ("class_triv: " ^ msg, 0, []);
   in
-    fix_shyps [] []
-      (Thm {thy_ref = thy_ref,
-            der = Pt.infer_derivs' I
-              (false, Pt.PAxm ("ProtoPure.class_triv:" ^ c, t, SOME [])),
-            maxidx = maxidx,
-            shyps = [],
-            hyps = [],
-            tpairs = [],
-            prop = t})
+    Thm {thy_ref = thy_ref,
+      der = Pt.infer_derivs' I (false, Pt.PAxm ("ProtoPure.class_triv:" ^ c, t, SOME [])),
+      maxidx = maxidx,
+      shyps = sorts,
+      hyps = [],
+      tpairs = [],
+      prop = t}
   end;
 
 
 (* Replace all TFrees not fixed or in the hyps by new TVars *)
-fun varifyT' fixed (Thm{thy_ref,der,maxidx,shyps,hyps,tpairs,prop}) =
+fun varifyT' fixed (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
   let
     val tfrees = foldr add_term_tfrees fixed hyps;
     val prop1 = attach_tpairs tpairs prop;
     val (prop2, al) = Type.varify (prop1, tfrees);
-    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2)
-  in (*no fix_shyps*)
-   (Thm{thy_ref = thy_ref,
-        der = Pt.infer_derivs' (Pt.varify_proof prop tfrees) der,
-        maxidx = Int.max(0,maxidx),
-        shyps = shyps,
-        hyps = hyps,
-        tpairs = rev (map Logic.dest_equals ts),
-        prop = prop3}, al)
+    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
+  in
+    (Thm {thy_ref = thy_ref,
+      der = Pt.infer_derivs' (Pt.varify_proof prop tfrees) der,
+      maxidx = Int.max (0, maxidx),
+      shyps = shyps,
+      hyps = hyps,
+      tpairs = rev (map Logic.dest_equals ts),
+      prop = prop3}, al)
   end;
 
 val varifyT = #1 o varifyT' [];
 
 (* Replace all TVars by new TFrees *)
-fun freezeT(Thm{thy_ref,der,maxidx,shyps,hyps,tpairs,prop}) =
+fun freezeT (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
   let
     val prop1 = attach_tpairs tpairs prop;
     val prop2 = Type.freeze prop1;
-    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2)
-  in (*no fix_shyps*)
-    Thm{thy_ref = thy_ref,
-        der = Pt.infer_derivs' (Pt.freezeT prop1) der,
-        maxidx = maxidx_of_term prop2,
-        shyps = shyps,
-        hyps = hyps,
-        tpairs = rev (map Logic.dest_equals ts),
-        prop = prop3}
+    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
+  in
+    Thm {thy_ref = thy_ref,
+      der = Pt.infer_derivs' (Pt.freezeT prop1) der,
+      maxidx = maxidx_of_term prop2,
+      shyps = shyps,
+      hyps = hyps,
+      tpairs = rev (map Logic.dest_equals ts),
+      prop = prop3}
   end;
 
 
@@ -1084,105 +1043,108 @@
 (*Increment variables and parameters of orule as required for
   resolution with goal i of state. *)
 fun lift_rule (state, i) orule =
-  let val Thm{shyps=sshyps, prop=sprop, maxidx=smax, thy_ref=sthy_ref,...} = state
-      val (Bi::_, _) = Logic.strip_prems(i, [], sprop)
-        handle TERM _ => raise THM("lift_rule", i, [orule,state])
-      val ct_Bi = Cterm {thy_ref=sthy_ref, maxidx=smax, T=propT, t=Bi}
-      val (lift_abs,lift_all) = Logic.lift_fns(Bi,smax+1)
-      val (Thm{thy_ref, der, maxidx,shyps,hyps,tpairs,prop}) = orule
-      val (As, B) = Logic.strip_horn prop
-  in  (*no fix_shyps*)
-      Thm{thy_ref = merge_thm_thys(state,orule),
-          der = Pt.infer_derivs' (Pt.lift_proof Bi (smax+1) prop) der,
-          maxidx = maxidx+smax+1,
-          shyps = Sorts.union_sort(sshyps,shyps),
-          hyps = hyps,
-          tpairs = map (pairself lift_abs) tpairs,
-          prop = Logic.list_implies (map lift_all As, lift_all B)}
+  let
+    val Thm {shyps = sshyps, prop = sprop, maxidx = smax, thy_ref = sthy_ref,...} = state;
+    val (Bi :: _, _) = Logic.strip_prems (i, [], sprop)
+      handle TERM _ => raise THM ("lift_rule", i, [orule, state]);
+    val (lift_abs, lift_all) = Logic.lift_fns (Bi, smax + 1);
+    val (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) = orule;
+    val (As, B) = Logic.strip_horn prop;
+  in
+    Thm {thy_ref = merge_thys2 state orule,
+      der = Pt.infer_derivs' (Pt.lift_proof Bi (smax + 1) prop) der,
+      maxidx = maxidx + smax + 1,
+      shyps = Sorts.union sshyps shyps,
+      hyps = hyps,
+      tpairs = map (pairself lift_abs) tpairs,
+      prop = Logic.list_implies (map lift_all As, lift_all B)}
   end;
 
 fun incr_indexes i (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
-  if i < 0 then raise THM ("negative increment", 0, [thm]) else
-  if i = 0 then thm else
+  if i < 0 then raise THM ("negative increment", 0, [thm])
+  else if i = 0 then thm
+  else
     Thm {thy_ref = thy_ref,
-         der = Pt.infer_derivs' (Pt.map_proof_terms
-           (Logic.incr_indexes ([], i)) (incr_tvar i)) der,
-         maxidx = maxidx + i,
-         shyps = shyps,
-         hyps = hyps,
-         tpairs = map (pairself (Logic.incr_indexes ([], i))) tpairs,
-         prop = Logic.incr_indexes ([], i) prop};
+      der = Pt.infer_derivs' (Pt.map_proof_terms (Logic.incr_indexes ([], i)) (incr_tvar i)) der,
+      maxidx = maxidx + i,
+      shyps = shyps,
+      hyps = hyps,
+      tpairs = map (pairself (Logic.incr_indexes ([], i))) tpairs,
+      prop = Logic.incr_indexes ([], i) prop};
 
 (*Solve subgoal Bi of proof state B1...Bn/C by assumption. *)
 fun assumption i state =
-  let val Thm{thy_ref,der,maxidx,hyps,prop,...} = state;
-      val (tpairs, Bs, Bi, C) = dest_state(state,i)
-      fun newth n (env as Envir.Envir{maxidx, ...}, tpairs) =
-        fix_shyps [state] (env_codT env)
-          (Thm{thy_ref = thy_ref,
-               der = Pt.infer_derivs'
-                 ((if Envir.is_empty env then I else (Pt.norm_proof' env)) o
-                   Pt.assumption_proof Bs Bi n) der,
-               maxidx = maxidx,
-               shyps = [],
-               hyps = hyps,
-               tpairs = if Envir.is_empty env then tpairs else
-                 map (pairself (Envir.norm_term env)) tpairs,
-               prop =
-               if Envir.is_empty env then (*avoid wasted normalizations*)
-                   Logic.list_implies (Bs, C)
-               else (*normalize the new rule fully*)
-                   Envir.norm_term env (Logic.list_implies (Bs, C))});
-      fun addprfs [] _ = Seq.empty
-        | addprfs ((t,u)::apairs) n = Seq.make (fn()=> Seq.pull
-             (Seq.mapp (newth n)
-                (Unify.unifiers(Theory.deref thy_ref,Envir.empty maxidx, (t,u)::tpairs))
-                (addprfs apairs (n+1))))
-  in  addprfs (Logic.assum_pairs (~1,Bi)) 1 end;
+  let
+    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
+    val (tpairs, Bs, Bi, C) = dest_state (state, i);
+    fun newth n (env as Envir.Envir {maxidx, ...}, tpairs) =
+      Thm {thy_ref = thy_ref,
+        der = Pt.infer_derivs'
+          ((if Envir.is_empty env then I else (Pt.norm_proof' env)) o
+            Pt.assumption_proof Bs Bi n) der,
+        maxidx = maxidx,
+        shyps = insert_env_sorts env shyps,
+        hyps = hyps,
+        tpairs =
+          if Envir.is_empty env then tpairs
+          else map (pairself (Envir.norm_term env)) tpairs,
+        prop =
+          if Envir.is_empty env then (*avoid wasted normalizations*)
+            Logic.list_implies (Bs, C)
+          else (*normalize the new rule fully*)
+            Envir.norm_term env (Logic.list_implies (Bs, C))};
+    fun addprfs [] _ = Seq.empty
+      | addprfs ((t, u) :: apairs) n = Seq.make (fn () => Seq.pull
+          (Seq.mapp (newth n)
+            (Unify.unifiers (Theory.deref thy_ref, Envir.empty maxidx, (t, u) :: tpairs))
+            (addprfs apairs (n + 1))))
+  in addprfs (Logic.assum_pairs (~1, Bi)) 1 end;
 
 (*Solve subgoal Bi of proof state B1...Bn/C by assumption.
   Checks if Bi's conclusion is alpha-convertible to one of its assumptions*)
 fun eq_assumption i state =
-  let val Thm{thy_ref,der,maxidx,hyps,prop,...} = state;
-      val (tpairs, Bs, Bi, C) = dest_state(state,i)
-  in  (case find_index (op aconv) (Logic.assum_pairs (~1,Bi)) of
-         (~1) => raise THM("eq_assumption", 0, [state])
-       | n => fix_shyps [state] []
-                (Thm{thy_ref = thy_ref,
-                     der = Pt.infer_derivs'
-                       (Pt.assumption_proof Bs Bi (n+1)) der,
-                     maxidx = maxidx,
-                     shyps = [],
-                     hyps = hyps,
-                     tpairs = tpairs,
-                     prop = Logic.list_implies (Bs, C)}))
+  let
+    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
+    val (tpairs, Bs, Bi, C) = dest_state (state, i);
+  in
+    (case find_index (op aconv) (Logic.assum_pairs (~1, Bi)) of
+      ~1 => raise THM ("eq_assumption", 0, [state])
+    | n =>
+        Thm {thy_ref = thy_ref,
+          der = Pt.infer_derivs' (Pt.assumption_proof Bs Bi (n + 1)) der,
+          maxidx = maxidx,
+          shyps = shyps,
+          hyps = hyps,
+          tpairs = tpairs,
+          prop = Logic.list_implies (Bs, C)})
   end;
 
 
 (*For rotate_tac: fast rotation of assumptions of subgoal i*)
 fun rotate_rule k i state =
-  let val Thm{thy_ref,der,maxidx,hyps,prop,shyps,...} = state;
-      val (tpairs, Bs, Bi, C) = dest_state(state,i)
-      val params = Term.strip_all_vars Bi
-      and rest   = Term.strip_all_body Bi
-      val asms   = Logic.strip_imp_prems rest
-      and concl  = Logic.strip_imp_concl rest
-      val n      = length asms
-      val m      = if k<0 then n+k else k
-      val Bi'    = if 0=m orelse m=n then Bi
-                   else if 0<m andalso m<n
-                   then let val (ps,qs) = splitAt(m,asms)
-                        in list_all(params, Logic.list_implies(qs @ ps, concl))
-                        end
-                   else raise THM("rotate_rule", k, [state])
-  in  (*no fix_shyps*)
-      Thm{thy_ref = thy_ref,
-          der = Pt.infer_derivs' (Pt.rotate_proof Bs Bi m) der,
-          maxidx = maxidx,
-          shyps = shyps,
-          hyps = hyps,
-          tpairs = tpairs,
-          prop = Logic.list_implies (Bs @ [Bi'], C)}
+  let
+    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
+    val (tpairs, Bs, Bi, C) = dest_state (state, i);
+    val params = Term.strip_all_vars Bi
+    and rest   = Term.strip_all_body Bi;
+    val asms   = Logic.strip_imp_prems rest
+    and concl  = Logic.strip_imp_concl rest;
+    val n = length asms;
+    val m = if k < 0 then n + k else k;
+    val Bi' =
+      if 0 = m orelse m = n then Bi
+      else if 0 < m andalso m < n then
+        let val (ps, qs) = splitAt (m, asms)
+        in list_all (params, Logic.list_implies (qs @ ps, concl)) end
+      else raise THM ("rotate_rule", k, [state]);
+  in
+    Thm {thy_ref = thy_ref,
+      der = Pt.infer_derivs' (Pt.rotate_proof Bs Bi m) der,
+      maxidx = maxidx,
+      shyps = shyps,
+      hyps = hyps,
+      tpairs = tpairs,
+      prop = Logic.list_implies (Bs @ [Bi'], C)}
   end;
 
 
@@ -1190,27 +1152,29 @@
   unchanged.  Does nothing if k=0 or if k equals n-j, where n is the
   number of premises.  Useful with etac and underlies tactic/defer_tac*)
 fun permute_prems j k rl =
-  let val Thm{thy_ref,der,maxidx,hyps,tpairs,prop,shyps} = rl
-      val prems  = Logic.strip_imp_prems prop
-      and concl  = Logic.strip_imp_concl prop
-      val moved_prems = List.drop(prems, j)
-      and fixed_prems = List.take(prems, j)
-        handle Subscript => raise THM("permute_prems:j", j, [rl])
-      val n_j    = length moved_prems
-      val m = if k<0 then n_j + k else k
-      val prop'  = if 0 = m orelse m = n_j then prop
-                   else if 0<m andalso m<n_j
-                   then let val (ps,qs) = splitAt(m,moved_prems)
-                        in Logic.list_implies(fixed_prems @ qs @ ps, concl) end
-                   else raise THM("permute_prems:k", k, [rl])
-  in  (*no fix_shyps*)
-      Thm{thy_ref = thy_ref,
-          der = Pt.infer_derivs' (Pt.permute_prems_prf prems j m) der,
-          maxidx = maxidx,
-          shyps = shyps,
-          hyps = hyps,
-          tpairs = tpairs,
-          prop = prop'}
+  let
+    val Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop} = rl;
+    val prems = Logic.strip_imp_prems prop
+    and concl = Logic.strip_imp_concl prop;
+    val moved_prems = List.drop (prems, j)
+    and fixed_prems = List.take (prems, j)
+      handle Subscript => raise THM ("permute_prems: j", j, [rl]);
+    val n_j = length moved_prems;
+    val m = if k < 0 then n_j + k else k;
+    val prop' =
+      if 0 = m orelse m = n_j then prop
+      else if 0 < m andalso m < n_j then
+        let val (ps, qs) = splitAt (m, moved_prems)
+        in Logic.list_implies (fixed_prems @ qs @ ps, concl) end
+      else raise THM ("permute_prems:k", k, [rl]);
+  in
+    Thm {thy_ref = thy_ref,
+      der = Pt.infer_derivs' (Pt.permute_prems_prf prems j m) der,
+      maxidx = maxidx,
+      shyps = shyps,
+      hyps = hyps,
+      tpairs = tpairs,
+      prop = prop'}
   end;
 
 
@@ -1221,35 +1185,36 @@
   The names in cs, if distinct, are used for the innermost parameters;
    preceding parameters may be renamed to make all params distinct.*)
 fun rename_params_rule (cs, i) state =
-  let val Thm{thy_ref,der,maxidx,hyps,shyps,...} = state
-      val (tpairs, Bs, Bi, C) = dest_state(state,i)
-      val iparams = map #1 (Logic.strip_params Bi)
-      val short = length iparams - length cs
-      val newnames =
-            if short<0 then error"More names than abstractions!"
-            else variantlist(Library.take (short,iparams), cs) @ cs
-      val freenames = map (#1 o dest_Free) (term_frees Bi)
-      val newBi = Logic.list_rename_params (newnames, Bi)
+  let
+    val Thm {thy_ref, der, maxidx, shyps, hyps, ...} = state;
+    val (tpairs, Bs, Bi, C) = dest_state (state, i);
+    val iparams = map #1 (Logic.strip_params Bi);
+    val short = length iparams - length cs;
+    val newnames =
+      if short < 0 then error "More names than abstractions!"
+      else variantlist (Library.take (short, iparams), cs) @ cs;
+    val freenames = map (#1 o dest_Free) (term_frees Bi);
+    val newBi = Logic.list_rename_params (newnames, Bi);
   in
-  case findrep cs of
-     c::_ => (warning ("Can't rename.  Bound variables not distinct: " ^ c);
-              state)
-   | [] => (case cs inter_string freenames of
-       a::_ => (warning ("Can't rename.  Bound/Free variable clash: " ^ a);
-                state)
-     | [] => Thm{thy_ref = thy_ref,
-                 der = der,
-                 maxidx = maxidx,
-                 shyps = shyps,
-                 hyps = hyps,
-                 tpairs = tpairs,
-                 prop = Logic.list_implies (Bs @ [newBi], C)})
+    case findrep cs of
+      c :: _ => (warning ("Can't rename.  Bound variables not distinct: " ^ c); state)
+    | [] =>
+      (case cs inter_string freenames of
+        a :: _ => (warning ("Can't rename.  Bound/Free variable clash: " ^ a); state)
+      | [] =>
+        Thm {thy_ref = thy_ref,
+          der = der,
+          maxidx = maxidx,
+          shyps = shyps,
+          hyps = hyps,
+          tpairs = tpairs,
+          prop = Logic.list_implies (Bs @ [newBi], C)})
   end;
 
 
 (*** Preservation of bound variable names ***)
 
-fun rename_boundvars pat obj (thm as Thm {thy_ref, der, maxidx, hyps, shyps, tpairs, prop}) =
+fun rename_boundvars pat obj (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
   (case Term.rename_abs pat obj prop of
     NONE => thm
   | SOME prop' => Thm
@@ -1344,7 +1309,7 @@
          (*How many hyps to skip over during normalization*)
      and nlift = Logic.count_prems(strip_all_body Bi,
                                    if eres_flg then ~1 else 0)
-     val thy_ref = merge_thm_thys(state,orule);
+     val thy_ref = merge_thys2 state orule;
      val thy = Theory.deref thy_ref;
      (** Add new theorem with prop = '[| Bs; As |] ==> C' to thq **)
      fun addth A (As, oldAs, rder', n) ((env as Envir.Envir {maxidx, ...}, tpairs), thq) =
@@ -1363,7 +1328,7 @@
                 else (*normalize the new rule fully*)
                   (ntps, (map normt (Bs @ As), normt C))
              end
-           val th = (*tuned fix_shyps*)
+           val th =
              Thm{thy_ref = thy_ref,
                  der = Pt.infer_derivs
                    ((if Envir.is_empty env then I
@@ -1373,8 +1338,8 @@
                        curry op oo (Pt.norm_proof' env))
                     (Pt.bicompose_proof Bs oldAs As A n)) rder' sder,
                  maxidx = maxidx,
-                 shyps = add_env_sorts (env, Sorts.union_sort(rshyps,sshyps)),
-                 hyps = union_term(rhyps,shyps),
+                 shyps = insert_env_sorts env (Sorts.union rshyps sshyps),
+                 hyps = union_hyps rhyps shyps,
                  tpairs = ntpairs,
                  prop = Logic.list_implies normp}
         in  Seq.cons(th, thq)  end  handle COMPOSE => thq;
@@ -1464,14 +1429,14 @@
       in
         if T <> propT then
           raise THM ("Oracle's result must have type prop: " ^ name, 0, [])
-        else fix_shyps [] []
-          (Thm {thy_ref = Theory.self_ref thy',
+        else
+          Thm {thy_ref = Theory.self_ref thy',
             der = (true, Pt.oracle_proof name prop),
             maxidx = maxidx,
-            shyps = [],
+            shyps = Sorts.insert_term prop [],
             hyps = [],
             tpairs = [],
-            prop = prop})
+            prop = prop}
       end
   end;