src/HOL/Matrix/LP.thy
changeset 41550 efa734d9b221
parent 41413 64cd30d6b0b8
--- a/src/HOL/Matrix/LP.thy	Fri Jan 14 15:43:04 2011 +0100
+++ b/src/HOL/Matrix/LP.thy	Fri Jan 14 15:44:47 2011 +0100
@@ -12,7 +12,7 @@
   "c <= d"    
   shows "a <= b + d"
   apply (rule_tac order_trans[where y = "b+c"])
-  apply (simp_all add: prems)
+  apply (simp_all add: assms)
   done
 
 lemma linprog_dual_estimate:
@@ -26,8 +26,8 @@
   shows
   "c * x \<le> y * b' + (y * \<delta>A + abs (y * A' - c') + \<delta>c) * r"
 proof -
-  from prems have 1: "y * b <= y * b'" by (simp add: mult_left_mono)
-  from prems have 2: "y * (A * x) <= y * b" by (simp add: mult_left_mono) 
+  from assms have 1: "y * b <= y * b'" by (simp add: mult_left_mono)
+  from assms have 2: "y * (A * x) <= y * b" by (simp add: mult_left_mono) 
   have 3: "y * (A * x) = c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x" by (simp add: algebra_simps)  
   from 1 2 3 have 4: "c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x <= y * b'" by simp
   have 5: "c * x <= y * b' + abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)"
@@ -44,23 +44,23 @@
   have 11: "abs (c'-c) = abs (c-c')" 
     by (subst 10, subst abs_minus_cancel, simp)
   have 12: "(abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + \<delta>c) * abs x"
-    by (simp add: 11 prems mult_right_mono)
+    by (simp add: 11 assms mult_right_mono)
   have 13: "(abs y * abs (A-A') + abs (y*A'-c') + \<delta>c) * abs x <= (abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * abs x"
-    by (simp add: prems mult_right_mono mult_left_mono)  
+    by (simp add: assms mult_right_mono mult_left_mono)  
   have r: "(abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * abs x <=  (abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * r"
     apply (rule mult_left_mono)
-    apply (simp add: prems)
+    apply (simp add: assms)
     apply (rule_tac add_mono[of "0::'a" _ "0", simplified])+
     apply (rule mult_left_mono[of "0" "\<delta>A", simplified])
     apply (simp_all)
-    apply (rule order_trans[where y="abs (A-A')"], simp_all add: prems)
-    apply (rule order_trans[where y="abs (c-c')"], simp_all add: prems)
+    apply (rule order_trans[where y="abs (A-A')"], simp_all add: assms)
+    apply (rule order_trans[where y="abs (c-c')"], simp_all add: assms)
     done    
   from 6 7 8 9 12 13 r have 14:" abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <=(abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * r"     
     by (simp)
   show ?thesis
     apply (rule le_add_right_mono[of _ _ "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)"])
-    apply (simp_all only: 5 14[simplified abs_of_nonneg[of y, simplified prems]])
+    apply (simp_all only: 5 14[simplified abs_of_nonneg[of y, simplified assms]])
     done
 qed
 
@@ -73,10 +73,10 @@
   have "0 <= A - A1"    
   proof -
     have 1: "A - A1 = A + (- A1)" by simp
-    show ?thesis by (simp only: 1 add_right_mono[of A1 A "-A1", simplified, simplified prems])
+    show ?thesis by (simp only: 1 add_right_mono[of A1 A "-A1", simplified, simplified assms])
   qed
   then have "abs (A-A1) = A-A1" by (rule abs_of_nonneg)
-  with prems show "abs (A-A1) <= (A2-A1)" by simp
+  with assms show "abs (A-A1) <= (A2-A1)" by simp
 qed
 
 lemma mult_le_prts:
@@ -95,31 +95,31 @@
   then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
     by (simp add: algebra_simps)
   moreover have "pprt a * pprt b <= pprt a2 * pprt b2"
-    by (simp_all add: prems mult_mono)
+    by (simp_all add: assms mult_mono)
   moreover have "pprt a * nprt b <= pprt a1 * nprt b2"
   proof -
     have "pprt a * nprt b <= pprt a * nprt b2"
-      by (simp add: mult_left_mono prems)
+      by (simp add: mult_left_mono assms)
     moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2"
-      by (simp add: mult_right_mono_neg prems)
+      by (simp add: mult_right_mono_neg assms)
     ultimately show ?thesis
       by simp
   qed
   moreover have "nprt a * pprt b <= nprt a2 * pprt b1"
   proof - 
     have "nprt a * pprt b <= nprt a2 * pprt b"
-      by (simp add: mult_right_mono prems)
+      by (simp add: mult_right_mono assms)
     moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1"
-      by (simp add: mult_left_mono_neg prems)
+      by (simp add: mult_left_mono_neg assms)
     ultimately show ?thesis
       by simp
   qed
   moreover have "nprt a * nprt b <= nprt a1 * nprt b1"
   proof -
     have "nprt a * nprt b <= nprt a * nprt b1"
-      by (simp add: mult_left_mono_neg prems)
+      by (simp add: mult_left_mono_neg assms)
     moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1"
-      by (simp add: mult_right_mono_neg prems)
+      by (simp add: mult_right_mono_neg assms)
     ultimately show ?thesis
       by simp
   qed
@@ -141,19 +141,19 @@
   "c * x \<le> y * b + (let s1 = c1 - y * A2; s2 = c2 - y * A1 in pprt s2 * pprt r2 + pprt s1 * nprt r2 + nprt s2 * pprt r1 + nprt s1 * nprt r1)"
   (is "_ <= _ + ?C")
 proof -
-  from prems have "y * (A * x) <= y * b" by (simp add: mult_left_mono) 
+  from assms have "y * (A * x) <= y * b" by (simp add: mult_left_mono) 
   moreover have "y * (A * x) = c * x + (y * A - c) * x" by (simp add: algebra_simps)  
   ultimately have "c * x + (y * A - c) * x <= y * b" by simp
   then have "c * x <= y * b - (y * A - c) * x" by (simp add: le_diff_eq)
   then have cx: "c * x <= y * b + (c - y * A) * x" by (simp add: algebra_simps)
   have s2: "c - y * A <= c2 - y * A1"
-    by (simp add: diff_minus prems add_mono mult_left_mono)
+    by (simp add: diff_minus assms add_mono mult_left_mono)
   have s1: "c1 - y * A2 <= c - y * A"
-    by (simp add: diff_minus prems add_mono mult_left_mono)
+    by (simp add: diff_minus assms add_mono mult_left_mono)
   have prts: "(c - y * A) * x <= ?C"
     apply (simp add: Let_def)
     apply (rule mult_le_prts)
-    apply (simp_all add: prems s1 s2)
+    apply (simp_all add: assms s1 s2)
     done
   then have "y * b + (c - y * A) * x <= y * b + ?C"
     by simp