--- a/src/HOL/Old_Number_Theory/BijectionRel.thy Sat Oct 10 16:21:34 2015 +0200
+++ b/src/HOL/Old_Number_Theory/BijectionRel.thy Sat Oct 10 16:26:23 2015 +0200
@@ -3,18 +3,18 @@
Copyright 2000 University of Cambridge
*)
-section {* Bijections between sets *}
+section \<open>Bijections between sets\<close>
theory BijectionRel
imports Main
begin
-text {*
+text \<open>
Inductive definitions of bijections between two different sets and
between the same set. Theorem for relating the two definitions.
\bigskip
-*}
+\<close>
inductive_set
bijR :: "('a => 'b => bool) => ('a set * 'b set) set"
@@ -24,10 +24,10 @@
| insert: "P a b ==> a \<notin> A ==> b \<notin> B ==> (A, B) \<in> bijR P
==> (insert a A, insert b B) \<in> bijR P"
-text {*
+text \<open>
Add extra condition to @{term insert}: @{term "\<forall>b \<in> B. \<not> P a b"}
(and similar for @{term A}).
-*}
+\<close>
definition
bijP :: "('a => 'a => bool) => 'a set => bool" where
@@ -51,7 +51,7 @@
==> insert a (insert b A) \<in> bijER P"
-text {* \medskip @{term bijR} *}
+text \<open>\medskip @{term bijR}\<close>
lemma fin_bijRl: "(A, B) \<in> bijR P ==> finite A"
apply (erule bijR.induct)
@@ -100,7 +100,7 @@
done
-text {* \medskip @{term bijER} *}
+text \<open>\medskip @{term bijER}\<close>
lemma fin_bijER: "A \<in> bijER P ==> finite A"
apply (erule bijER.induct)