| changeset 58709 | efdc6c533bd3 |
| parent 57514 | bdc2c6b40bf2 |
| child 58770 | ae5e9b4f8daf |
--- a/src/HOL/NthRoot.thy Sun Oct 19 12:47:34 2014 +0200 +++ b/src/HOL/NthRoot.thy Sun Oct 19 18:05:26 2014 +0200 @@ -429,8 +429,7 @@ assumes n: "even n" shows "sqrt (2 ^ n) = 2 ^ (n div 2)" proof - - from n obtain m where m: "n = 2 * m" - unfolding even_mult_two_ex .. + from n obtain m where m: "n = 2 * m" .. from m have "sqrt (2 ^ n) = sqrt ((2 ^ m)\<^sup>2)" by (simp only: power_mult[symmetric] mult.commute) then show ?thesis