--- a/src/HOL/Import/HOLLightInt.thy Sat Mar 03 21:42:41 2012 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,208 +0,0 @@
-(* Title: HOL/Import/HOLLightInt.thy
- Author: Cezary Kaliszyk
-*)
-
-header {* Compatibility theorems for HOL Light integers *}
-
-theory HOLLightInt imports Main Real GCD begin
-
-fun int_coprime where "int_coprime ((a :: int), (b :: int)) = coprime a b"
-
-lemma DEF_int_coprime:
- "int_coprime = (\<lambda>u. \<exists>x y. ((fst u) * x) + ((snd u) * y) = int 1)"
- apply (auto simp add: fun_eq_iff)
- apply (metis bezout_int mult_commute)
- by (metis coprime_divisors_nat dvd_triv_left gcd_1_int gcd_add2_int)
-
-lemma INT_FORALL_POS:
- "(\<forall>n. P (int n)) = (\<forall>i\<ge>(int 0). P i)"
- by (auto, drule_tac x="nat i" in spec) simp
-
-lemma INT_LT_DISCRETE:
- "(x < y) = (x + int 1 \<le> y)"
- by auto
-
-lemma INT_ABS_MUL_1:
- "(abs (x * y) = int 1) = (abs x = int 1 \<and> abs y = int 1)"
- by simp (metis dvd_mult_right zdvd1_eq abs_zmult_eq_1 abs_mult mult_1_right)
-
-lemma dest_int_rep:
- "\<exists>(n :: nat). real (i :: int) = real n \<or> real i = - real n"
- by (metis (full_types) of_int_of_nat real_eq_of_int real_of_nat_def)
-
-lemma DEF_int_add:
- "op + = (\<lambda>u ua. floor (real u + real ua))"
- by simp
-
-lemma DEF_int_sub:
- "op - = (\<lambda>u ua. floor (real u - real ua))"
- by simp
-
-lemma DEF_int_mul:
- "op * = (\<lambda>u ua. floor (real u * real ua))"
- by (metis floor_number_of number_of_is_id number_of_real_def real_eq_of_int real_of_int_mult)
-
-lemma DEF_int_abs:
- "abs = (\<lambda>u. floor (abs (real u)))"
- by (metis floor_real_of_int real_of_int_abs)
-
-lemma DEF_int_sgn:
- "sgn = (\<lambda>u. floor (sgn (real u)))"
- by (simp add: sgn_if fun_eq_iff)
-
-lemma int_sgn_th:
- "real (sgn (x :: int)) = sgn (real x)"
- by (simp add: sgn_if)
-
-lemma DEF_int_max:
- "max = (\<lambda>u ua. floor (max (real u) (real ua)))"
- by (metis floor_real_of_int real_of_int_le_iff sup_absorb1 sup_commute sup_max linorder_linear)
-
-lemma int_max_th:
- "real (max (x :: int) y) = max (real x) (real y)"
- by (metis min_max.le_iff_sup min_max.sup_absorb1 real_of_int_le_iff linorder_linear)
-
-lemma DEF_int_min:
- "min = (\<lambda>u ua. floor (min (real u) (real ua)))"
- by (metis floor_real_of_int inf_absorb1 inf_absorb2 inf_int_def inf_real_def real_of_int_le_iff linorder_linear)
-
-lemma int_min_th:
- "real (min (x :: int) y) = min (real x) (real y)"
- by (metis inf_absorb1 inf_absorb2 inf_int_def inf_real_def real_of_int_le_iff linorder_linear)
-
-lemma INT_IMAGE:
- "(\<exists>n. x = int n) \<or> (\<exists>n. x = - int n)"
- by (metis number_of_eq number_of_is_id of_int_of_nat)
-
-lemma DEF_int_pow:
- "op ^ = (\<lambda>u ua. floor (real u ^ ua))"
- by (simp add: floor_power)
-
-lemma DEF_int_divides:
- "op dvd = (\<lambda>(u :: int) ua. \<exists>x. ua = u * x)"
- by (metis dvdE dvdI)
-
-lemma DEF_int_divides':
- "(a :: int) dvd b = (\<exists>x. b = a * x)"
- by (metis dvdE dvdI)
-
-definition "int_mod (u :: int) ua ub = (u dvd (ua - ub))"
-
-lemma int_mod_def':
- "int_mod = (\<lambda>u ua ub. (u dvd (ua - ub)))"
- by (simp add: int_mod_def_raw)
-
-lemma int_congruent:
- "\<forall>x xa xb. int_mod xb x xa = (\<exists>d. x - xa = xb * d)"
- unfolding int_mod_def'
- by (auto simp add: DEF_int_divides')
-
-lemma int_congruent':
- "\<forall>(x :: int) y n. (n dvd x - y) = (\<exists>d. x - y = n * d)"
- using int_congruent[unfolded int_mod_def] .
-
-fun int_gcd where
- "int_gcd ((a :: int), (b :: int)) = gcd a b"
-
-definition "hl_mod (k\<Colon>int) (l\<Colon>int) = (if 0 \<le> l then k mod l else k mod - l)"
-
-lemma hl_mod_nonneg:
- "b \<noteq> 0 \<Longrightarrow> hl_mod a b \<ge> 0"
- by (simp add: hl_mod_def)
-
-lemma hl_mod_lt_abs:
- "b \<noteq> 0 \<Longrightarrow> hl_mod a b < abs b"
- by (simp add: hl_mod_def)
-
-definition "hl_div k l = (if 0 \<le> l then k div l else -(k div (-l)))"
-
-lemma hl_mod_div:
- "n \<noteq> (0\<Colon>int) \<Longrightarrow> m = hl_div m n * n + hl_mod m n"
- unfolding hl_div_def hl_mod_def
- by auto (metis zmod_zdiv_equality mult_commute mult_minus_left)
-
-lemma sth:
- "(\<forall>(x :: int) y z. x + (y + z) = x + y + z) \<and>
- (\<forall>(x :: int) y. x + y = y + x) \<and>
- (\<forall>(x :: int). int 0 + x = x) \<and>
- (\<forall>(x :: int) y z. x * (y * z) = x * y * z) \<and>
- (\<forall>(x :: int) y. x * y = y * x) \<and>
- (\<forall>(x :: int). int 1 * x = x) \<and>
- (\<forall>(x :: int). int 0 * x = int 0) \<and>
- (\<forall>(x :: int) y z. x * (y + z) = x * y + x * z) \<and>
- (\<forall>(x :: int). x ^ 0 = int 1) \<and> (\<forall>(x :: int) n. x ^ Suc n = x * x ^ n)"
- by (simp_all add: right_distrib)
-
-lemma INT_DIVISION:
- "n ~= int 0 \<Longrightarrow> m = hl_div m n * n + hl_mod m n \<and> int 0 \<le> hl_mod m n \<and> hl_mod m n < abs n"
- by (auto simp add: hl_mod_nonneg hl_mod_lt_abs hl_mod_div)
-
-lemma INT_DIVMOD_EXIST_0:
- "\<exists>q r. if n = int 0 then q = int 0 \<and> r = m
- else int 0 \<le> r \<and> r < abs n \<and> m = q * n + r"
- apply (rule_tac x="hl_div m n" in exI)
- apply (rule_tac x="hl_mod m n" in exI)
- apply (auto simp add: hl_mod_nonneg hl_mod_lt_abs hl_mod_div)
- unfolding hl_div_def hl_mod_def
- by auto
-
-lemma DEF_div:
- "hl_div = (SOME q. \<exists>r. \<forall>m n. if n = int 0 then q m n = int 0 \<and> r m n = m
- else (int 0) \<le> (r m n) \<and> (r m n) < (abs n) \<and> m = ((q m n) * n) + (r m n))"
- apply (rule some_equality[symmetric])
- apply (rule_tac x="hl_mod" in exI)
- apply (auto simp add: fun_eq_iff hl_mod_nonneg hl_mod_lt_abs hl_mod_div)
- apply (simp add: hl_div_def)
- apply (simp add: hl_mod_def)
- apply (drule_tac x="x" in spec)
- apply (drule_tac x="xa" in spec)
- apply (case_tac "0 = xa")
- apply (simp add: hl_mod_def hl_div_def)
- apply (case_tac "xa > 0")
- apply (simp add: hl_mod_def hl_div_def)
- apply (metis comm_semiring_1_class.normalizing_semiring_rules(24) div_mult_self2 not_less_iff_gr_or_eq order_less_le add_0 zdiv_eq_0_iff mult_commute)
- apply (simp add: hl_mod_def hl_div_def)
- by (metis add.comm_neutral add_pos_nonneg div_mult_self1 less_minus_iff minus_add minus_add_cancel minus_minus mult_zero_right not_square_less_zero zdiv_eq_0_iff zdiv_zminus2)
-
-lemma DEF_rem:
- "hl_mod = (SOME r. \<forall>m n. if n = int 0 then
- (if 0 \<le> n then m div n else - (m div - n)) = int 0 \<and> r m n = m
- else int 0 \<le> r m n \<and> r m n < abs n \<and>
- m = (if 0 \<le> n then m div n else - (m div - n)) * n + r m n)"
- apply (rule some_equality[symmetric])
- apply (fold hl_div_def)
- apply (auto simp add: fun_eq_iff hl_mod_nonneg hl_mod_lt_abs hl_mod_div)
- apply (simp add: hl_div_def)
- apply (simp add: hl_mod_def)
- apply (drule_tac x="x" in spec)
- apply (drule_tac x="xa" in spec)
- apply (case_tac "0 = xa")
- apply (simp add: hl_mod_def hl_div_def)
- apply (case_tac "xa > 0")
- apply (simp add: hl_mod_def hl_div_def)
- apply (metis add_left_cancel mod_div_equality)
- apply (simp add: hl_mod_def hl_div_def)
- by (metis minus_mult_right mod_mult_self2 mod_pos_pos_trivial add_commute zminus_zmod zmod_zminus2 mult_commute)
-
-lemma DEF_int_gcd:
- "int_gcd = (SOME d. \<forall>a b. (int 0) \<le> (d (a, b)) \<and> (d (a, b)) dvd a \<and>
- (d (a, b)) dvd b \<and> (\<exists>x y. d (a, b) = (a * x) + (b * y)))"
- apply (rule some_equality[symmetric])
- apply auto
- apply (metis bezout_int mult_commute)
- apply (auto simp add: fun_eq_iff)
- apply (drule_tac x="a" in spec)
- apply (drule_tac x="b" in spec)
- using gcd_greatest_int zdvd_antisym_nonneg
- by auto
-
-definition "eqeq x y (r :: 'a \<Rightarrow> 'b \<Rightarrow> bool) = r x y"
-
-lemma INT_INTEGRAL:
- "(\<forall>x. int 0 * x = int 0) \<and>
- (\<forall>(x :: int) y z. (x + y = x + z) = (y = z)) \<and>
- (\<forall>(w :: int) x y z. (w * y + x * z = w * z + x * y) = (w = x \<or> y = z))"
- by (auto simp add: crossproduct_eq)
-
-end
-