--- a/src/HOL/IMP/Small_Step.thy Thu Oct 20 10:44:00 2011 +0200
+++ b/src/HOL/IMP/Small_Step.thy Thu Oct 20 12:30:43 2011 -0400
@@ -46,16 +46,6 @@
declare small_step.intros[simp,intro]
-text{* So-called transitivity rules. See below. *}
-
-declare step[trans] step1[trans]
-
-lemma step2[trans]:
- "cs \<rightarrow> cs' \<Longrightarrow> cs' \<rightarrow> cs'' \<Longrightarrow> cs \<rightarrow>* cs''"
-by(metis refl step)
-
-declare star_trans[trans]
-
text{* Rule inversion: *}
inductive_cases SkipE[elim!]: "(SKIP,s) \<rightarrow> ct"
@@ -92,9 +82,7 @@
by(blast intro: star.step star_semi2 star_trans)
text{* The following proof corresponds to one on the board where one would
-show chains of @{text "\<rightarrow>"} and @{text "\<rightarrow>*"} steps. This is what the
-also/finally proof steps do: they compose chains, implicitly using the rules
-declared with attribute [trans] above. *}
+show chains of @{text "\<rightarrow>"} and @{text "\<rightarrow>*"} steps. *}
lemma big_to_small:
"cs \<Rightarrow> t \<Longrightarrow> cs \<rightarrow>* (SKIP,t)"
@@ -110,21 +98,23 @@
fix s::state and b c0 c1 t
assume "bval b s"
hence "(IF b THEN c0 ELSE c1,s) \<rightarrow> (c0,s)" by simp
- also assume "(c0,s) \<rightarrow>* (SKIP,t)"
- finally show "(IF b THEN c0 ELSE c1,s) \<rightarrow>* (SKIP,t)" . --"= by assumption"
+ moreover assume "(c0,s) \<rightarrow>* (SKIP,t)"
+ ultimately
+ show "(IF b THEN c0 ELSE c1,s) \<rightarrow>* (SKIP,t)" by (metis star.simps)
next
fix s::state and b c0 c1 t
assume "\<not>bval b s"
hence "(IF b THEN c0 ELSE c1,s) \<rightarrow> (c1,s)" by simp
- also assume "(c1,s) \<rightarrow>* (SKIP,t)"
- finally show "(IF b THEN c0 ELSE c1,s) \<rightarrow>* (SKIP,t)" .
+ moreover assume "(c1,s) \<rightarrow>* (SKIP,t)"
+ ultimately
+ show "(IF b THEN c0 ELSE c1,s) \<rightarrow>* (SKIP,t)" by (metis star.simps)
next
fix b c and s::state
assume b: "\<not>bval b s"
let ?if = "IF b THEN c; WHILE b DO c ELSE SKIP"
have "(WHILE b DO c,s) \<rightarrow> (?if, s)" by blast
- also have "(?if,s) \<rightarrow> (SKIP, s)" by (simp add: b)
- finally show "(WHILE b DO c,s) \<rightarrow>* (SKIP,s)" by auto
+ moreover have "(?if,s) \<rightarrow> (SKIP, s)" by (simp add: b)
+ ultimately show "(WHILE b DO c,s) \<rightarrow>* (SKIP,s)" by (metis refl step)
next
fix b c s s' t
let ?w = "WHILE b DO c"
@@ -133,9 +123,9 @@
assume c: "(c,s) \<rightarrow>* (SKIP,s')"
assume b: "bval b s"
have "(?w,s) \<rightarrow> (?if, s)" by blast
- also have "(?if, s) \<rightarrow> (c; ?w, s)" by (simp add: b)
- also have "(c; ?w,s) \<rightarrow>* (SKIP,t)" by(rule semi_comp[OF c w])
- finally show "(WHILE b DO c,s) \<rightarrow>* (SKIP,t)" by auto
+ moreover have "(?if, s) \<rightarrow> (c; ?w, s)" by (simp add: b)
+ moreover have "(c; ?w,s) \<rightarrow>* (SKIP,t)" by(rule semi_comp[OF c w])
+ ultimately show "(WHILE b DO c,s) \<rightarrow>* (SKIP,t)" by (metis star.simps)
qed
text{* Each case of the induction can be proved automatically: *}