src/HOL/MicroJava/BV/Semilat.thy
changeset 10496 f2d304bdf3cc
child 10797 028d22926a41
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/MicroJava/BV/Semilat.thy	Mon Nov 20 16:37:42 2000 +0100
@@ -0,0 +1,235 @@
+(*  Title:      HOL/BCV/Semilat.thy
+    ID:         $Id$
+    Author:     Tobias Nipkow
+    Copyright   2000 TUM
+
+Semilattices
+*)
+
+header "Semilattices"
+
+theory Semilat = Main:
+
+types 'a ord    = "'a => 'a => bool"
+      'a binop  = "'a => 'a => 'a"
+      'a sl     = "'a set * 'a ord * 'a binop"
+
+consts
+ "@lesub"   :: "'a => 'a ord => 'a => bool" ("(_ /<='__ _)" [50, 1000, 51] 50)
+ "@lesssub" :: "'a => 'a ord => 'a => bool" ("(_ /<'__ _)" [50, 1000, 51] 50)
+defs
+lesub_def:   "x <=_r y == r x y"
+lesssub_def: "x <_r y  == x <=_r y & x ~= y"
+
+consts
+ "@plussub" :: "'a => ('a => 'b => 'c) => 'b => 'c" ("(_ /+'__ _)" [65, 1000, 66] 65)
+defs
+plussub_def: "x +_f y == f x y"
+
+
+constdefs
+ ord :: "('a*'a)set => 'a ord"
+"ord r == %x y. (x,y):r"
+
+ order :: "'a ord => bool"
+"order r == (!x. x <=_r x) &
+            (!x y. x <=_r y & y <=_r x --> x=y) &
+            (!x y z. x <=_r y & y <=_r z --> x <=_r z)"
+
+ acc :: "'a ord => bool"
+"acc r == wf{(y,x) . x <_r y}"
+
+ top :: "'a ord => 'a => bool"
+"top r T == !x. x <=_r T"
+
+ closed :: "'a set => 'a binop => bool"
+"closed A f == !x:A. !y:A. x +_f y : A"
+
+ semilat :: "'a sl => bool"
+"semilat == %(A,r,f). order r & closed A f &
+                (!x:A. !y:A. x <=_r x +_f y)  &
+                (!x:A. !y:A. y <=_r x +_f y)  &
+                (!x:A. !y:A. !z:A. x <=_r z & y <=_r z --> x +_f y <=_r z)"
+
+ is_ub :: "('a*'a)set => 'a => 'a => 'a => bool"
+"is_ub r x y u == (x,u):r & (y,u):r"
+
+ is_lub :: "('a*'a)set => 'a => 'a => 'a => bool"
+"is_lub r x y u == is_ub r x y u & (!z. is_ub r x y z --> (u,z):r)"
+
+ some_lub :: "('a*'a)set => 'a => 'a => 'a"
+"some_lub r x y == SOME z. is_lub r x y z"
+
+
+lemma order_refl [simp, intro]:
+  "order r ==> x <=_r x";
+  by (simp add: order_def)
+
+lemma order_antisym:
+  "[| order r; x <=_r y; y <=_r x |] ==> x = y"
+apply (unfold order_def)
+apply (simp (no_asm_simp))  
+done
+
+lemma order_trans:
+   "[| order r; x <=_r y; y <=_r z |] ==> x <=_r z"
+apply (unfold order_def)
+apply blast
+done 
+
+lemma order_less_irrefl [intro, simp]:
+   "order r ==> ~ x <_r x"
+apply (unfold order_def lesssub_def)
+apply blast
+done 
+
+lemma order_less_trans:
+  "[| order r; x <_r y; y <_r z |] ==> x <_r z"
+apply (unfold order_def lesssub_def)
+apply blast
+done 
+
+lemma topD [simp, intro]:
+  "top r T ==> x <=_r T"
+  by (simp add: top_def)
+
+lemma top_le_conv [simp]:
+  "[| order r; top r T |] ==> (T <=_r x) = (x = T)"
+  by (blast intro: order_antisym)
+
+lemma semilat_Def:
+"semilat(A,r,f) == order r & closed A f & 
+                 (!x:A. !y:A. x <=_r x +_f y) & 
+                 (!x:A. !y:A. y <=_r x +_f y) & 
+                 (!x:A. !y:A. !z:A. x <=_r z & y <=_r z --> x +_f y <=_r z)"
+apply (unfold semilat_def Product_Type.split [THEN eq_reflection])
+apply (rule refl [THEN eq_reflection])
+done
+
+lemma semilatDorderI [simp, intro]:
+  "semilat(A,r,f) ==> order r"
+  by (simp add: semilat_Def)
+
+lemma semilatDclosedI [simp, intro]:
+  "semilat(A,r,f) ==> closed A f"
+apply (unfold semilat_Def)
+apply simp
+done
+
+lemma semilat_ub1 [simp]:
+  "[| semilat(A,r,f); x:A; y:A |] ==> x <=_r x +_f y"
+  by (unfold semilat_Def, simp)
+
+lemma semilat_ub2 [simp]:
+  "[| semilat(A,r,f); x:A; y:A |] ==> y <=_r x +_f y"
+  by (unfold semilat_Def, simp)
+
+lemma semilat_lub [simp]:
+ "[| x <=_r z; y <=_r z; semilat(A,r,f); x:A; y:A; z:A |] ==> x +_f y <=_r z";
+  by (unfold semilat_Def, simp)
+
+
+lemma plus_le_conv [simp]:
+  "[| x:A; y:A; z:A; semilat(A,r,f) |] 
+  ==> (x +_f y <=_r z) = (x <=_r z & y <=_r z)"
+apply (unfold semilat_Def)
+apply (blast intro: semilat_ub1 semilat_ub2 semilat_lub order_trans)
+done
+
+lemma le_iff_plus_unchanged:
+  "[| x:A; y:A; semilat(A,r,f) |] ==> (x <=_r y) = (x +_f y = y)"
+apply (rule iffI)
+ apply (intro semilatDorderI order_antisym semilat_lub order_refl semilat_ub2, assumption+)
+apply (erule subst)
+apply simp
+done 
+
+lemma le_iff_plus_unchanged2:
+  "[| x:A; y:A; semilat(A,r,f) |] ==> (x <=_r y) = (y +_f x = y)"
+apply (rule iffI)
+ apply (intro semilatDorderI order_antisym semilat_lub order_refl semilat_ub1, assumption+)
+apply (erule subst)
+apply simp
+done 
+
+(*** closed ***)
+
+lemma closedD:
+  "[| closed A f; x:A; y:A |] ==> x +_f y : A"
+apply (unfold closed_def)
+apply blast
+done 
+
+lemma closed_UNIV [simp]: "closed UNIV f"
+  by (simp add: closed_def)
+
+(*** lub ***)
+
+lemma is_lubD:
+  "is_lub r x y u ==> is_ub r x y u & (!z. is_ub r x y z --> (u,z):r)"
+  by (simp add: is_lub_def)
+
+lemma is_ubI:
+  "[| (x,u) : r; (y,u) : r |] ==> is_ub r x y u"
+  by (simp add: is_ub_def)
+
+lemma is_ubD:
+  "is_ub r x y u ==> (x,u) : r & (y,u) : r"
+  by (simp add: is_ub_def)
+
+
+lemma is_lub_bigger1 [iff]:  
+  "is_lub (r^* ) x y y = ((x,y):r^* )"
+apply (unfold is_lub_def is_ub_def)
+apply blast
+done
+
+
+lemma is_lub_bigger2 [iff]:
+  "is_lub (r^* ) x y x = ((y,x):r^* )"
+apply (unfold is_lub_def is_ub_def)
+apply blast 
+done 
+
+
+lemma extend_lub:
+  "[| univalent r; is_lub (r^* ) x y u; (x',x) : r |] 
+  ==> EX v. is_lub (r^* ) x' y v"
+apply (unfold is_lub_def is_ub_def)
+apply (case_tac "(y,x) : r^*")
+ apply (case_tac "(y,x') : r^*")
+  apply blast
+ apply (blast intro: r_into_rtrancl elim: converse_rtranclE
+               dest: univalentD)
+apply (rule exI)
+apply (rule conjI)
+ apply (blast intro: rtrancl_into_rtrancl2 dest: univalentD)
+apply (blast intro: rtrancl_into_rtrancl rtrancl_into_rtrancl2 
+             elim: converse_rtranclE dest: univalentD)
+done 
+
+lemma univalent_has_lubs [rule_format]:
+  "[| univalent r; (x,u) : r^* |] ==> (!y. (y,u) : r^* --> 
+  (EX z. is_lub (r^* ) x y z))"
+apply (erule converse_rtrancl_induct)
+ apply clarify
+ apply (erule converse_rtrancl_induct)
+  apply blast
+ apply (blast intro: rtrancl_into_rtrancl2)
+apply (blast intro: extend_lub)
+done
+
+lemma some_lub_conv:
+  "[| acyclic r; is_lub (r^* ) x y u |] ==> some_lub (r^* ) x y = u"
+apply (unfold some_lub_def is_lub_def)
+apply (rule someI2)
+ apply assumption
+apply (blast intro: antisymD dest!: acyclic_impl_antisym_rtrancl)
+done 
+
+lemma is_lub_some_lub:
+  "[| univalent r; acyclic r; (x,u):r^*; (y,u):r^* |] 
+  ==> is_lub (r^* ) x y (some_lub (r^* ) x y)";
+  by (fastsimp dest: univalent_has_lubs simp add: some_lub_conv)
+
+end