src/HOL/ex/svc_funcs.ML
changeset 12869 f362c0323d92
child 14982 ff1c919f4982
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/svc_funcs.ML	Tue Feb 05 23:18:08 2002 +0100
@@ -0,0 +1,260 @@
+(*  Title:      HOL/Tools/svc_funcs.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson
+    Copyright   1999  University of Cambridge
+
+Translation functions for the interface to SVC
+
+Based upon the work of Søren T. Heilmann
+
+Integers and naturals are translated as follows:
+  In a positive context, replace x<y by x+1<=y
+  In a negative context, replace x<=y by x<y+1
+  In a negative context, replace x=y by x<y+1 & y<x+1
+Biconditionals (if-and-only-iff) are expanded if they require such translations
+  in either operand.
+
+For each variable of type nat, an assumption is added that it is non-negative.
+*)
+
+structure Svc =
+struct
+ val trace = ref false;
+
+ datatype expr =
+     Buildin of string * expr list
+   | Interp of string * expr list
+   | UnInterp of string * expr list
+   | FalseExpr 
+   | TrueExpr
+   | Int of int
+   | Rat of int * int;
+
+ open BasisLibrary
+
+ fun signedInt i = 
+     if i < 0 then "-" ^ Int.toString (~i)
+     else Int.toString i;
+	 
+ fun is_intnat T = T = HOLogic.intT orelse T = HOLogic.natT;
+ 
+ fun is_numeric T = is_intnat T orelse T = HOLogic.realT;
+ 
+ fun is_numeric_op T = is_numeric (domain_type T);
+
+ fun toString t =
+     let fun ue (Buildin(s, l)) = 
+	     "(" ^ s ^ (foldl (fn (a, b) => a ^ " " ^ (ue b)) ("", l)) ^ ") "
+	   | ue (Interp(s, l)) = 
+	     "{" ^ s ^ (foldl (fn (a, b) => a ^ " " ^ (ue b)) ("", l)) ^ "} "
+	   | ue (UnInterp(s, l)) = 
+	     "(" ^ s ^ (foldl (fn (a, b) => a ^ " " ^ (ue b)) ("", l)) ^ ") "
+	   | ue (FalseExpr) = "FALSE "
+	   | ue (TrueExpr)  = "TRUE "
+	   | ue (Int i)     = (signedInt i) ^ " "
+	   | ue (Rat(i, j)) = (signedInt i) ^ "|" ^ (signedInt j) ^ " "
+     in
+	 ue t
+     end;
+
+ fun valid e = 
+  let val svc_home = getenv "SVC_HOME" 
+      val svc_machine = getenv "SVC_MACHINE"
+      val check_valid = if svc_home = ""
+	                then error "Environment variable SVC_HOME not set"
+			else if svc_machine = ""
+	                then error "Environment variable SVC_MACHINE not set"
+			else svc_home ^ "/" ^ svc_machine ^ "/bin/check_valid"
+      val svc_input = toString e
+      val _ = if !trace then tracing ("Calling SVC:\n" ^ svc_input) else ()
+      val svc_input_file  = File.tmp_path (Path.basic "SVM_in");
+      val svc_output_file = File.tmp_path (Path.basic "SVM_out");
+      val _ = (File.write svc_input_file svc_input;
+	       execute (check_valid ^ " -dump-result " ^ 
+			File.sysify_path svc_output_file ^
+			" " ^ File.sysify_path svc_input_file ^ 
+			"> /dev/null 2>&1"))
+      val svc_output =
+        (case Library.try File.read svc_output_file of
+          Some out => out
+        | None => error "SVC returned no output");
+  in
+      if ! trace then tracing ("SVC Returns:\n" ^ svc_output)
+      else (File.rm svc_input_file; File.rm svc_output_file);
+      String.isPrefix "VALID" svc_output
+  end
+
+ (*New exception constructor for passing arguments to the oracle*)
+ exception OracleExn of term;
+
+ fun apply c args =
+     let val (ts, bs) = ListPair.unzip args
+     in  (list_comb(c,ts), exists I bs)  end;
+
+ (*Determining whether the biconditionals must be unfolded: if there are
+   int or nat comparisons below*)
+ val iff_tag =
+   let fun tag t =
+	 let val (c,ts) = strip_comb t
+	 in  case c of
+	     Const("op &", _)   => apply c (map tag ts)
+	   | Const("op |", _)   => apply c (map tag ts)
+	   | Const("op -->", _) => apply c (map tag ts)
+	   | Const("Not", _)    => apply c (map tag ts)
+	   | Const("True", _)   => (c, false)
+	   | Const("False", _)  => (c, false)
+	   | Const("op =", Type ("fun", [T,_])) => 
+		 if T = HOLogic.boolT then
+		     (*biconditional: with int/nat comparisons below?*)
+		     let val [t1,t2] = ts
+			 val (u1,b1) = tag t1
+			 and (u2,b2) = tag t2
+			 val cname = if b1 orelse b2 then "unfold" else "keep"
+		     in 
+			(Const ("SVC_Oracle.iff_" ^ cname, dummyT) $ u1 $ u2,
+			 b1 orelse b2)
+		     end
+		 else (*might be numeric equality*) (t, is_intnat T)
+	   | Const("op <", Type ("fun", [T,_]))  => (t, is_intnat T)
+	   | Const("op <=", Type ("fun", [T,_])) => (t, is_intnat T)
+	   | _ => (t, false)
+	 end
+   in #1 o tag end;
+
+ (*Map expression e to 0<=a --> e, where "a" is the name of a nat variable*)
+ fun add_nat_var (a, e) = 
+     Buildin("=>", [Buildin("<=", [Int 0, UnInterp (a, [])]),
+		    e]);
+
+ fun param_string [] = ""
+   | param_string is = "_" ^ space_implode "_" (map string_of_int is)
+
+ (*Translate an Isabelle formula into an SVC expression
+   pos ["positive"]: true if an assumption, false if a goal*)
+ fun expr_of pos t =
+  let
+    val params = rev (rename_wrt_term t (Term.strip_all_vars t))
+    and body   = Term.strip_all_body t
+    val nat_vars = ref ([] : string list)
+    (*translation of a variable: record all natural numbers*)
+    fun trans_var (a,T,is) =
+	(if T = HOLogic.natT then nat_vars := (a ins_string (!nat_vars))
+	                     else ();
+         UnInterp (a ^ param_string is, []))
+    (*A variable, perhaps applied to a series of parameters*)
+    fun var (Free(a,T), is)      = trans_var ("F_" ^ a, T, is)
+      | var (Var((a, 0), T), is) = trans_var (a, T, is)
+      | var (Bound i, is)        = 
+          let val (a,T) = List.nth (params, i)
+	  in  trans_var ("B_" ^ a, T, is)  end
+      | var (t $ Bound i, is)    = var(t,i::is)
+            (*removing a parameter from a Var: the bound var index will
+               become part of the Var's name*)
+      | var (t,_) = raise OracleExn t;
+    (*translation of a literal*)
+    fun lit (Const("Numeral.number_of", _) $ w) =
+          (HOLogic.dest_binum w handle TERM _ => raise Match)
+      | lit (Const("0", _)) = 0
+      | lit (Const("1", _)) = 1
+    (*translation of a literal expression [no variables]*)
+    fun litExp (Const("op +", T) $ x $ y) = 
+	  if is_numeric_op T then (litExp x) + (litExp y)
+          else raise OracleExn t
+      | litExp (Const("op -", T) $ x $ y) = 
+	  if is_numeric_op T then (litExp x) - (litExp y)
+          else raise OracleExn t
+      | litExp (Const("op *", T) $ x $ y) = 
+	  if is_numeric_op T then (litExp x) * (litExp y)
+          else raise OracleExn t
+      | litExp (Const("uminus", T) $ x)   = 
+	  if is_numeric_op T then ~(litExp x)
+          else raise OracleExn t
+      | litExp t = lit t 
+		   handle Match => raise OracleExn t
+    (*translation of a real/rational expression*)
+    fun suc t = Interp("+", [Int 1, t])
+    fun tm (Const("Suc", T) $ x) = suc (tm x)
+      | tm (Const("op +", T) $ x $ y) = 
+	  if is_numeric_op T then Interp("+", [tm x, tm y])
+          else raise OracleExn t
+      | tm (Const("op -", T) $ x $ y) = 
+	  if is_numeric_op T then 
+	      Interp("+", [tm x, Interp("*", [Int ~1, tm y])])
+          else raise OracleExn t
+      | tm (Const("op *", T) $ x $ y) = 
+	  if is_numeric_op T then Interp("*", [tm x, tm y])
+          else raise OracleExn t
+      | tm (Const("RealDef.rinv", T) $ x) = 
+	  if domain_type T = HOLogic.realT then 
+	      Rat(1, litExp x)
+          else raise OracleExn t
+      | tm (Const("uminus", T) $ x) = 
+	  if is_numeric_op T then Interp("*", [Int ~1, tm x])
+          else raise OracleExn t
+      | tm t = Int (lit t) 
+	       handle Match => var (t,[])
+    (*translation of a formula*)
+    and fm pos (Const("op &", _) $ p $ q) =  
+	    Buildin("AND", [fm pos p, fm pos q])
+      | fm pos (Const("op |", _) $ p $ q) =  
+	    Buildin("OR", [fm pos p, fm pos q])
+      | fm pos (Const("op -->", _) $ p $ q) =  
+	    Buildin("=>", [fm (not pos) p, fm pos q])
+      | fm pos (Const("Not", _) $ p) =  
+	    Buildin("NOT", [fm (not pos) p])
+      | fm pos (Const("True", _)) = TrueExpr
+      | fm pos (Const("False", _)) = FalseExpr
+      | fm pos (Const("SVC_Oracle.iff_keep", _) $ p $ q) = 
+	     (*polarity doesn't matter*)
+	    Buildin("=", [fm pos p, fm pos q]) 
+      | fm pos (Const("SVC_Oracle.iff_unfold", _) $ p $ q) = 
+	    Buildin("AND",   (*unfolding uses both polarities*)
+			 [Buildin("=>", [fm (not pos) p, fm pos q]),
+			  Buildin("=>", [fm (not pos) q, fm pos p])])
+      | fm pos (t as Const("op =", Type ("fun", [T,_])) $ x $ y) = 
+	    let val tx = tm x and ty = tm y
+		in if pos orelse T = HOLogic.realT then
+		       Buildin("=", [tx, ty])
+		   else if is_intnat T then
+		       Buildin("AND", 
+				    [Buildin("<", [tx, suc ty]), 
+				     Buildin("<", [ty, suc tx])])
+		   else raise OracleExn t
+	    end
+	(*inequalities: possible types are nat, int, real*)
+      | fm pos (t as Const("op <",  Type ("fun", [T,_])) $ x $ y) = 
+	    if not pos orelse T = HOLogic.realT then
+		Buildin("<", [tm x, tm y])
+	    else if is_intnat T then
+		Buildin("<=", [suc (tm x), tm y])
+	    else raise OracleExn t
+      | fm pos (t as Const("op <=",  Type ("fun", [T,_])) $ x $ y) = 
+	    if pos orelse T = HOLogic.realT then
+		Buildin("<=", [tm x, tm y])
+	    else if is_intnat T then
+		Buildin("<", [tm x, suc (tm y)])
+	    else raise OracleExn t
+      | fm pos t = var(t,[]);
+      (*entry point, and translation of a meta-formula*)
+      fun mt pos ((c as Const("Trueprop", _)) $ p) = fm pos (iff_tag p)
+	| mt pos ((c as Const("==>", _)) $ p $ q) = 
+	    Buildin("=>", [mt (not pos) p, mt pos q])
+	| mt pos t = fm pos (iff_tag t)  (*it might be a formula*)
+
+      val body_e = mt pos body  (*evaluate now to assign into !nat_vars*)
+  in 
+     foldr add_nat_var (!nat_vars, body_e) 
+  end;
+
+
+ (*The oracle proves the given formula t, if possible*)
+ fun oracle (sign, OracleExn t) = 
+   let val dummy = if !trace then tracing ("Subgoal abstracted to\n" ^
+					   Sign.string_of_term sign t)
+                   else ()
+   in
+       if valid (expr_of false t) then t
+       else raise OracleExn t
+   end;
+
+end;