--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Quickcheck_Examples/Quickcheck_Narrowing_Examples.thy Wed Feb 22 08:01:41 2012 +0100
@@ -0,0 +1,270 @@
+(* Title: HOL/ex/Quickcheck_Narrowing_Examples.thy
+ Author: Lukas Bulwahn
+ Copyright 2011 TU Muenchen
+*)
+
+header {* Examples for narrowing-based testing *}
+
+theory Quickcheck_Narrowing_Examples
+imports Main
+begin
+
+declare [[quickcheck_timeout = 3600]]
+
+subsection {* Minimalistic examples *}
+
+lemma
+ "x = y"
+quickcheck[tester = narrowing, finite_types = false, default_type = int, expect = counterexample]
+oops
+
+lemma
+ "x = y"
+quickcheck[tester = narrowing, finite_types = false, default_type = nat, expect = counterexample]
+oops
+
+subsection {* Simple examples with existentials *}
+
+lemma
+ "\<exists> y :: nat. \<forall> x. x = y"
+quickcheck[tester = narrowing, finite_types = false, expect = counterexample]
+oops
+(*
+lemma
+ "\<exists> y :: int. \<forall> x. x = y"
+quickcheck[tester = narrowing, size = 2]
+oops
+*)
+lemma
+ "x > 1 --> (\<exists>y :: nat. x < y & y <= 1)"
+quickcheck[tester = narrowing, finite_types = false, expect = counterexample]
+oops
+
+lemma
+ "x > 2 --> (\<exists>y :: nat. x < y & y <= 2)"
+quickcheck[tester = narrowing, finite_types = false, size = 10]
+oops
+
+lemma
+ "\<forall> x. \<exists> y :: nat. x > 3 --> (y < x & y > 3)"
+quickcheck[tester = narrowing, finite_types = false, size = 7]
+oops
+
+text {* A false conjecture derived from an partial copy-n-paste of @{thm not_distinct_decomp} *}
+lemma
+ "~ distinct ws ==> EX xs ys zs y. ws = xs @ [y] @ ys @ [y]"
+quickcheck[tester = narrowing, finite_types = false, default_type = nat, expect = counterexample]
+oops
+
+text {* A false conjecture derived from theorems @{thm split_list_first} and @{thm split_list_last} *}
+lemma
+ "x : set xs ==> EX ys zs. xs = ys @ x # zs & x ~: set zs & x ~: set ys"
+quickcheck[tester = narrowing, finite_types = false, default_type = nat, expect = counterexample]
+oops
+
+text {* A false conjecture derived from @{thm map_eq_Cons_conv} with a typo *}
+lemma
+ "(map f xs = y # ys) = (EX z zs. xs = z' # zs & f z = y & map f zs = ys)"
+quickcheck[tester = narrowing, finite_types = false, default_type = nat, expect = counterexample]
+oops
+
+lemma "a # xs = ys @ [a] ==> EX zs. xs = zs @ [a] & ys = a#zs"
+quickcheck[narrowing, expect = counterexample]
+quickcheck[exhaustive, random, expect = no_counterexample]
+oops
+
+subsection {* Simple list examples *}
+
+lemma "rev xs = xs"
+quickcheck[tester = narrowing, finite_types = false, default_type = nat, expect = counterexample]
+oops
+
+(* FIXME: integer has strange representation! *)
+lemma "rev xs = xs"
+quickcheck[tester = narrowing, finite_types = false, default_type = int, expect = counterexample]
+oops
+(*
+lemma "rev xs = xs"
+ quickcheck[tester = narrowing, finite_types = true, expect = counterexample]
+oops
+*)
+subsection {* Simple examples with functions *}
+
+lemma "map f xs = map g xs"
+ quickcheck[tester = narrowing, finite_types = false, expect = counterexample]
+oops
+
+lemma "map f xs = map f ys ==> xs = ys"
+ quickcheck[tester = narrowing, finite_types = false, expect = counterexample]
+oops
+
+lemma
+ "list_all2 P (rev xs) (rev ys) = list_all2 P xs (rev ys)"
+ quickcheck[tester = narrowing, finite_types = false, expect = counterexample]
+oops
+
+lemma "map f xs = F f xs"
+ quickcheck[tester = narrowing, finite_types = false, expect = counterexample]
+oops
+
+lemma "map f xs = F f xs"
+ quickcheck[tester = narrowing, finite_types = false, expect = counterexample]
+oops
+
+(* requires some work...*)
+(*
+lemma "R O S = S O R"
+ quickcheck[tester = narrowing, size = 2]
+oops
+*)
+
+subsection {* Simple examples with inductive predicates *}
+
+inductive even where
+ "even 0" |
+ "even n ==> even (Suc (Suc n))"
+
+code_pred even .
+
+lemma "even (n - 2) ==> even n"
+quickcheck[narrowing, expect = counterexample]
+oops
+
+
+subsection {* AVL Trees *}
+
+datatype 'a tree = ET | MKT 'a "'a tree" "'a tree" nat
+
+primrec set_of :: "'a tree \<Rightarrow> 'a set"
+where
+"set_of ET = {}" |
+"set_of (MKT n l r h) = insert n (set_of l \<union> set_of r)"
+
+primrec height :: "'a tree \<Rightarrow> nat"
+where
+"height ET = 0" |
+"height (MKT x l r h) = max (height l) (height r) + 1"
+
+primrec avl :: "'a tree \<Rightarrow> bool"
+where
+"avl ET = True" |
+"avl (MKT x l r h) =
+ ((height l = height r \<or> height l = 1+height r \<or> height r = 1+height l) \<and>
+ h = max (height l) (height r) + 1 \<and> avl l \<and> avl r)"
+
+primrec is_ord :: "('a::order) tree \<Rightarrow> bool"
+where
+"is_ord ET = True" |
+"is_ord (MKT n l r h) =
+ ((\<forall>n' \<in> set_of l. n' < n) \<and> (\<forall>n' \<in> set_of r. n < n') \<and> is_ord l \<and> is_ord r)"
+
+primrec is_in :: "('a::order) \<Rightarrow> 'a tree \<Rightarrow> bool"
+where
+ "is_in k ET = False" |
+ "is_in k (MKT n l r h) = (if k = n then True else
+ if k < n then (is_in k l)
+ else (is_in k r))"
+
+primrec ht :: "'a tree \<Rightarrow> nat"
+where
+"ht ET = 0" |
+"ht (MKT x l r h) = h"
+
+definition
+ mkt :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
+"mkt x l r = MKT x l r (max (ht l) (ht r) + 1)"
+
+(* replaced MKT lrn lrl lrr by MKT lrr lrl *)
+fun l_bal where
+"l_bal(n, MKT ln ll lr h, r) =
+ (if ht ll < ht lr
+ then case lr of ET \<Rightarrow> ET (* impossible *)
+ | MKT lrn lrr lrl lrh \<Rightarrow>
+ mkt lrn (mkt ln ll lrl) (mkt n lrr r)
+ else mkt ln ll (mkt n lr r))"
+
+fun r_bal where
+"r_bal(n, l, MKT rn rl rr h) =
+ (if ht rl > ht rr
+ then case rl of ET \<Rightarrow> ET (* impossible *)
+ | MKT rln rll rlr h \<Rightarrow> mkt rln (mkt n l rll) (mkt rn rlr rr)
+ else mkt rn (mkt n l rl) rr)"
+
+primrec insrt :: "'a::order \<Rightarrow> 'a tree \<Rightarrow> 'a tree"
+where
+"insrt x ET = MKT x ET ET 1" |
+"insrt x (MKT n l r h) =
+ (if x=n
+ then MKT n l r h
+ else if x<n
+ then let l' = insrt x l; hl' = ht l'; hr = ht r
+ in if hl' = 2+hr then l_bal(n,l',r)
+ else MKT n l' r (1 + max hl' hr)
+ else let r' = insrt x r; hl = ht l; hr' = ht r'
+ in if hr' = 2+hl then r_bal(n,l,r')
+ else MKT n l r' (1 + max hl hr'))"
+
+
+subsubsection {* Necessary setup for code generation *}
+
+primrec set_of'
+where
+ "set_of' ET = []"
+| "set_of' (MKT n l r h) = n # (set_of' l @ set_of' r)"
+
+lemma set_of':
+ "set (set_of' t) = set_of t"
+by (induct t) auto
+
+lemma is_ord_mkt:
+ "is_ord (MKT n l r h) = ((ALL n': set (set_of' l). n' < n) & (ALL n': set (set_of' r). n < n') & is_ord l & is_ord r)"
+by (simp add: set_of')
+
+declare is_ord.simps(1)[code] is_ord_mkt[code]
+
+subsubsection {* Invalid Lemma due to typo in lbal *}
+
+lemma is_ord_l_bal:
+ "\<lbrakk> is_ord(MKT (x :: nat) l r h); height l = height r + 2 \<rbrakk> \<Longrightarrow> is_ord(l_bal(x,l,r))"
+quickcheck[tester = narrowing, finite_types = false, default_type = nat, size = 6, expect = counterexample]
+oops
+
+subsection {* Examples with hd and last *}
+
+lemma
+ "hd (xs @ ys) = hd ys"
+quickcheck[narrowing, expect = counterexample]
+oops
+
+lemma
+ "last(xs @ ys) = last xs"
+quickcheck[narrowing, expect = counterexample]
+oops
+
+subsection {* Examples with underspecified/partial functions *}
+
+lemma
+ "xs = [] ==> hd xs \<noteq> x"
+quickcheck[narrowing, expect = no_counterexample]
+oops
+
+lemma
+ "xs = [] ==> hd xs = x"
+quickcheck[narrowing, expect = no_counterexample]
+oops
+
+lemma "xs = [] ==> hd xs = x ==> x = y"
+quickcheck[narrowing, expect = no_counterexample]
+oops
+
+lemma
+ "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
+quickcheck[narrowing, expect = no_counterexample]
+oops
+
+lemma
+ "hd (map f xs) = f (hd xs)"
+quickcheck[narrowing, expect = no_counterexample]
+oops
+
+end