src/HOL/Record.thy
changeset 32752 f65d74a264dd
parent 32745 192d58483fdf
child 32756 fb32a99a7689
--- a/src/HOL/Record.thy	Tue Sep 22 13:52:19 2009 +1000
+++ b/src/HOL/Record.thy	Wed Sep 23 19:17:48 2009 +1000
@@ -1,11 +1,12 @@
 (*  Title:      HOL/Record.thy
-    Author:     Wolfgang Naraschewski, Norbert Schirmer and Markus Wenzel, TU Muenchen
+    Authors:    Wolfgang Naraschewski, Norbert Schirmer and Markus Wenzel, TU Muenchen
+                Thomas Sewell, NICTA
 *)
 
 header {* Extensible records with structural subtyping *}
 
 theory Record
-imports Product_Type IsTuple
+imports Product_Type
 uses ("Tools/record.ML")
 begin
 
@@ -64,6 +65,402 @@
   "_record_scheme"      :: "[fields, 'a] => 'a"                 ("(3\<lparr>_,/ (2\<dots> =/ _)\<rparr>)")
   "_record_update"      :: "['a, updates] => 'b"                ("_/(3\<lparr>_\<rparr>)" [900,0] 900)
 
+subsection {* Operators and lemmas for types isomorphic to tuples *}
+
+text {*
+Records are isomorphic to compound tuple types. To implement efficient
+records, we make this isomorphism explicit. Consider the record
+access/update simplification "alpha (beta_update f rec) = alpha rec" for
+distinct fields alpha and beta of some record rec with n fields. There
+are n^2 such theorems, which prohibits storage of all of them for
+large n. The rules can be proved on the fly by case decomposition and
+simplification in O(n) time. By creating O(n) isomorphic-tuple types
+while defining the record, however, we can prove the access/update
+simplification in O(log(n)^2) time.
+
+The O(n) cost of case decomposition is not because O(n) steps are taken,
+but rather because the resulting rule must contain O(n) new variables and
+an O(n) size concrete record construction. To sidestep this cost, we would
+like to avoid case decomposition in proving access/update theorems.
+
+Record types are defined as isomorphic to tuple types. For instance, a
+record type with fields 'a, 'b, 'c and 'd might be introduced as
+isomorphic to 'a \<times> ('b \<times> ('c \<times> 'd)). If we balance the tuple tree to
+('a \<times> 'b) \<times> ('c \<times> 'd) then accessors can be defined by converting to
+the underlying type then using O(log(n)) fst or snd operations.
+Updators can be defined similarly, if we introduce a fst_update and
+snd_update function. Furthermore, we can prove the access/update
+theorem in O(log(n)) steps by using simple rewrites on fst, snd,
+fst_update and snd_update.
+
+The catch is that, although O(log(n)) steps were taken, the underlying
+type we converted to is a tuple tree of size O(n). Processing this term
+type wastes performance. We avoid this for large n by taking each
+subtree of size K and defining a new type isomorphic to that tuple
+subtree. A record can now be defined as isomorphic to a tuple tree
+of these O(n/K) new types, or, if n > K*K, we can repeat the process,
+until the record can be defined in terms of a tuple tree of complexity
+less than the constant K.
+
+If we prove the access/update theorem on this type with the analagous
+steps to the tuple tree, we consume O(log(n)^2) time as the intermediate
+terms are O(log(n)) in size and the types needed have size bounded by K.
+To enable this analagous traversal, we define the functions seen below:
+istuple_fst, istuple_snd, istuple_fst_update and istuple_snd_update.
+These functions generalise tuple operations by taking a parameter that
+encapsulates a tuple isomorphism. The rewrites needed on these functions
+now need an additional assumption which is that the isomorphism works.
+
+These rewrites are typically used in a structured way. They are here
+presented as the introduction rule isomorphic_tuple.intros rather than
+as a rewrite rule set. The introduction form is an optimisation, as net
+matching can be performed at one term location for each step rather than
+the simplifier searching the term for possible pattern matches. The rule
+set is used as it is viewed outside the locale, with the locale assumption
+(that the isomorphism is valid) left as a rule assumption. All rules are
+structured to aid net matching, using either a point-free form or an
+encapsulating predicate.
+*}
+
+typedef ('a, 'b, 'c) tuple_isomorphism
+  = "UNIV :: (('a \<Rightarrow> ('b \<times> 'c)) \<times> (('b \<times> 'c) \<Rightarrow> 'a)) set"
+  by simp
+
+definition
+  "TupleIsomorphism repr abst = Abs_tuple_isomorphism (repr, abst)"
+
+definition
+  istuple_fst :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'a \<Rightarrow> 'b"
+where
+ "istuple_fst isom \<equiv> let (repr, abst) = Rep_tuple_isomorphism isom in fst \<circ> repr"
+
+definition
+  istuple_snd :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'a \<Rightarrow> 'c"
+where
+ "istuple_snd isom \<equiv> let (repr, abst) = Rep_tuple_isomorphism isom in snd \<circ> repr"
+
+definition
+  istuple_fst_update :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'a)"
+where
+ "istuple_fst_update isom \<equiv>
+     let (repr, abst) = Rep_tuple_isomorphism isom in
+        (\<lambda>f v. abst (f (fst (repr v)), snd (repr v)))"
+
+definition
+  istuple_snd_update :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> ('c \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'a)"
+where
+ "istuple_snd_update isom \<equiv>
+     let (repr, abst) = Rep_tuple_isomorphism isom in
+        (\<lambda>f v. abst (fst (repr v), f (snd (repr v))))"
+
+definition
+  istuple_cons :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'a"
+where
+ "istuple_cons isom \<equiv> let (repr, abst) = Rep_tuple_isomorphism isom in curry abst"
+
+text {*
+These predicates are used in the introduction rule set to constrain
+matching appropriately. The elimination rules for them produce the
+desired theorems once they are proven. The final introduction rules are
+used when no further rules from the introduction rule set can apply.
+*}
+
+definition
+  istuple_surjective_proof_assist :: "'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
+where
+ "istuple_surjective_proof_assist x y f \<equiv> (f x = y)"
+
+definition
+  istuple_update_accessor_cong_assist :: "(('b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'a))
+                              \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
+where
+ "istuple_update_accessor_cong_assist upd acc
+    \<equiv> (\<forall>f v. upd (\<lambda>x. f (acc v)) v = upd f v)
+       \<and> (\<forall>v. upd id v = v)"
+
+definition
+  istuple_update_accessor_eq_assist :: "(('b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'a)) \<Rightarrow> ('a \<Rightarrow> 'b)
+                              \<Rightarrow> 'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
+where
+ "istuple_update_accessor_eq_assist upd acc v f v' x
+    \<equiv> upd f v = v' \<and> acc v = x
+      \<and> istuple_update_accessor_cong_assist upd acc"
+
+lemma update_accessor_congruence_foldE:
+  assumes uac: "istuple_update_accessor_cong_assist upd acc"
+  and       r: "r = r'" and v: "acc r' = v'"
+  and       f: "\<And>v. v' = v \<Longrightarrow> f v = f' v"
+  shows        "upd f r = upd f' r'"
+  using uac r v[symmetric]
+  apply (subgoal_tac "upd (\<lambda>x. f (acc r')) r' = upd (\<lambda>x. f' (acc r')) r'")
+   apply (simp add: istuple_update_accessor_cong_assist_def)
+  apply (simp add: f)
+  done
+
+lemma update_accessor_congruence_unfoldE:
+  "\<lbrakk> istuple_update_accessor_cong_assist upd acc;
+     r = r'; acc r' = v'; \<And>v. v = v' \<Longrightarrow> f v = f' v \<rbrakk>
+     \<Longrightarrow> upd f r = upd f' r'"
+  apply (erule(2) update_accessor_congruence_foldE)
+  apply simp
+  done
+
+lemma istuple_update_accessor_cong_assist_id:
+  "istuple_update_accessor_cong_assist upd acc \<Longrightarrow> upd id = id"
+  by (rule ext, simp add: istuple_update_accessor_cong_assist_def)
+
+lemma update_accessor_noopE:
+  assumes uac: "istuple_update_accessor_cong_assist upd acc"
+      and acc: "f (acc x) = acc x"
+  shows        "upd f x = x"
+  using uac
+  by (simp add: acc istuple_update_accessor_cong_assist_id[OF uac, unfolded id_def]
+          cong: update_accessor_congruence_unfoldE[OF uac])
+
+lemma update_accessor_noop_compE:
+  assumes uac: "istuple_update_accessor_cong_assist upd acc"
+  assumes acc: "f (acc x) = acc x"
+  shows      "upd (g \<circ> f) x = upd g x"
+  by (simp add: acc cong: update_accessor_congruence_unfoldE[OF uac])
+
+lemma update_accessor_cong_assist_idI:
+  "istuple_update_accessor_cong_assist id id"
+  by (simp add: istuple_update_accessor_cong_assist_def)
+
+lemma update_accessor_cong_assist_triv:
+  "istuple_update_accessor_cong_assist upd acc
+       \<Longrightarrow> istuple_update_accessor_cong_assist upd acc"
+  by assumption
+
+lemma update_accessor_accessor_eqE:
+  "\<lbrakk> istuple_update_accessor_eq_assist upd acc v f v' x \<rbrakk> \<Longrightarrow> acc v = x"
+  by (simp add: istuple_update_accessor_eq_assist_def)
+
+lemma update_accessor_updator_eqE:
+  "\<lbrakk> istuple_update_accessor_eq_assist upd acc v f v' x \<rbrakk> \<Longrightarrow> upd f v = v'"
+  by (simp add: istuple_update_accessor_eq_assist_def)
+
+lemma istuple_update_accessor_eq_assist_idI:
+  "v' = f v \<Longrightarrow> istuple_update_accessor_eq_assist id id v f v' v"
+  by (simp add: istuple_update_accessor_eq_assist_def
+                update_accessor_cong_assist_idI)
+
+lemma istuple_update_accessor_eq_assist_triv:
+  "istuple_update_accessor_eq_assist upd acc v f v' x
+     \<Longrightarrow> istuple_update_accessor_eq_assist upd acc v f v' x"
+  by assumption
+
+lemma istuple_update_accessor_cong_from_eq:
+  "istuple_update_accessor_eq_assist upd acc v f v' x
+     \<Longrightarrow> istuple_update_accessor_cong_assist upd acc"
+  by (simp add: istuple_update_accessor_eq_assist_def)
+
+lemma o_eq_dest:
+  "a o b = c o d \<Longrightarrow> a (b v) = c (d v)"
+  apply (clarsimp simp: o_def)
+  apply (erule fun_cong)
+  done
+
+lemma o_eq_elim:
+  "\<lbrakk> a o b = c o d; \<lbrakk> \<And>v. a (b v) = c (d v) \<rbrakk> \<Longrightarrow> R \<rbrakk> \<Longrightarrow> R"
+  apply (erule meta_mp)
+  apply (erule o_eq_dest)
+  done
+
+lemma istuple_surjective_proof_assistI:
+  "f x = y \<Longrightarrow>
+     istuple_surjective_proof_assist x y f"
+  by (simp add: istuple_surjective_proof_assist_def)
+
+lemma istuple_surjective_proof_assist_idE:
+  "istuple_surjective_proof_assist x y id \<Longrightarrow> x = y"
+  by (simp add: istuple_surjective_proof_assist_def)
+
+locale isomorphic_tuple =
+  fixes isom :: "('a, 'b, 'c) tuple_isomorphism" 
+       and repr and abst
+  defines "repr \<equiv> fst (Rep_tuple_isomorphism isom)"
+  defines "abst \<equiv> snd (Rep_tuple_isomorphism isom)"
+  assumes repr_inv: "\<And>x. abst (repr x) = x"
+  assumes abst_inv: "\<And>y. repr (abst y) = y"
+
+begin
+
+lemma repr_inj:
+  "(repr x = repr y) = (x = y)"
+  apply (rule iffI, simp_all)
+  apply (drule_tac f=abst in arg_cong, simp add: repr_inv)
+  done
+
+lemma abst_inj:
+  "(abst x = abst y) = (x = y)"
+  apply (rule iffI, simp_all)
+  apply (drule_tac f=repr in arg_cong, simp add: abst_inv)
+  done
+
+lemma split_Rep:
+  "split f (Rep_tuple_isomorphism isom)
+     = f repr abst"
+  by (simp add: split_def repr_def abst_def)
+
+lemmas simps = Let_def split_Rep repr_inv abst_inv repr_inj abst_inj
+
+lemma istuple_access_update_fst_fst:
+  "\<lbrakk> f o h g = j o f \<rbrakk> \<Longrightarrow>
+    (f o istuple_fst isom) o (istuple_fst_update isom o h) g
+          = j o (f o istuple_fst isom)"
+  by (clarsimp simp: istuple_fst_update_def istuple_fst_def simps
+             intro!: ext elim!: o_eq_elim)
+
+lemma istuple_access_update_snd_snd:
+  "\<lbrakk> f o h g = j o f \<rbrakk> \<Longrightarrow>
+    (f o istuple_snd isom) o (istuple_snd_update isom o h) g
+          = j o (f o istuple_snd isom)"
+  by (clarsimp simp: istuple_snd_update_def istuple_snd_def simps
+             intro!: ext elim!: o_eq_elim)
+
+lemma istuple_access_update_fst_snd:
+  "(f o istuple_fst isom) o (istuple_snd_update isom o h) g
+          = id o (f o istuple_fst isom)"
+  by (clarsimp simp: istuple_snd_update_def istuple_fst_def simps
+             intro!: ext elim!: o_eq_elim)
+
+lemma istuple_access_update_snd_fst:
+  "(f o istuple_snd isom) o (istuple_fst_update isom o h) g
+          = id o (f o istuple_snd isom)"
+  by (clarsimp simp: istuple_fst_update_def istuple_snd_def simps
+             intro!: ext elim!: o_eq_elim)
+
+lemma istuple_update_swap_fst_fst:
+  "\<lbrakk> h f o j g = j g o h f \<rbrakk> \<Longrightarrow>
+    (istuple_fst_update isom o h) f o (istuple_fst_update isom o j) g
+          = (istuple_fst_update isom o j) g o (istuple_fst_update isom o h) f"
+  by (clarsimp simp: istuple_fst_update_def simps
+             intro!: ext elim!: o_eq_elim)
+
+lemma istuple_update_swap_snd_snd:
+  "\<lbrakk> h f o j g = j g o h f \<rbrakk> \<Longrightarrow>
+    (istuple_snd_update isom o h) f o (istuple_snd_update isom o j) g
+          = (istuple_snd_update isom o j) g o (istuple_snd_update isom o h) f"
+  by (clarsimp simp: istuple_snd_update_def simps
+             intro!: ext elim!: o_eq_elim)
+
+lemma istuple_update_swap_fst_snd:
+  "(istuple_snd_update isom o h) f o (istuple_fst_update isom o j) g
+          = (istuple_fst_update isom o j) g o (istuple_snd_update isom o h) f"
+  by (clarsimp simp: istuple_fst_update_def istuple_snd_update_def simps
+             intro!: ext elim!: o_eq_elim)
+
+lemma istuple_update_swap_snd_fst:
+  "(istuple_fst_update isom o h) f o (istuple_snd_update isom o j) g
+          = (istuple_snd_update isom o j) g o (istuple_fst_update isom o h) f"
+  by (clarsimp simp: istuple_fst_update_def istuple_snd_update_def simps
+             intro!: ext elim!: o_eq_elim)
+
+lemma istuple_update_compose_fst_fst:
+  "\<lbrakk> h f o j g = k (f o g) \<rbrakk> \<Longrightarrow>
+    (istuple_fst_update isom o h) f o (istuple_fst_update isom o j) g
+          = (istuple_fst_update isom o k) (f o g)"
+  by (fastsimp simp: istuple_fst_update_def simps
+             intro!: ext elim!: o_eq_elim dest: fun_cong)
+
+lemma istuple_update_compose_snd_snd:
+  "\<lbrakk> h f o j g = k (f o g) \<rbrakk> \<Longrightarrow>
+    (istuple_snd_update isom o h) f o (istuple_snd_update isom o j) g
+          = (istuple_snd_update isom o k) (f o g)"
+  by (fastsimp simp: istuple_snd_update_def simps
+             intro!: ext elim!: o_eq_elim dest: fun_cong)
+
+lemma istuple_surjective_proof_assist_step:
+  "\<lbrakk> istuple_surjective_proof_assist v a (istuple_fst isom o f);
+     istuple_surjective_proof_assist v b (istuple_snd isom o f) \<rbrakk>
+      \<Longrightarrow> istuple_surjective_proof_assist v (istuple_cons isom a b) f"
+  by (clarsimp simp: istuple_surjective_proof_assist_def simps
+                     istuple_fst_def istuple_snd_def istuple_cons_def)
+
+lemma istuple_fst_update_accessor_cong_assist:
+  "istuple_update_accessor_cong_assist f g \<Longrightarrow>
+      istuple_update_accessor_cong_assist (istuple_fst_update isom o f) (g o istuple_fst isom)"
+  by (clarsimp simp: istuple_update_accessor_cong_assist_def simps
+                     istuple_fst_update_def istuple_fst_def)
+
+lemma istuple_snd_update_accessor_cong_assist:
+  "istuple_update_accessor_cong_assist f g \<Longrightarrow>
+      istuple_update_accessor_cong_assist (istuple_snd_update isom o f) (g o istuple_snd isom)"
+  by (clarsimp simp: istuple_update_accessor_cong_assist_def simps
+                     istuple_snd_update_def istuple_snd_def)
+
+lemma istuple_fst_update_accessor_eq_assist:
+  "istuple_update_accessor_eq_assist f g a u a' v \<Longrightarrow>
+      istuple_update_accessor_eq_assist (istuple_fst_update isom o f) (g o istuple_fst isom)
+              (istuple_cons isom a b) u (istuple_cons isom a' b) v"
+  by (clarsimp simp: istuple_update_accessor_eq_assist_def istuple_fst_update_def istuple_fst_def
+                     istuple_update_accessor_cong_assist_def istuple_cons_def simps)
+
+lemma istuple_snd_update_accessor_eq_assist:
+  "istuple_update_accessor_eq_assist f g b u b' v \<Longrightarrow>
+      istuple_update_accessor_eq_assist (istuple_snd_update isom o f) (g o istuple_snd isom)
+              (istuple_cons isom a b) u (istuple_cons isom a b') v"
+  by (clarsimp simp: istuple_update_accessor_eq_assist_def istuple_snd_update_def istuple_snd_def
+                     istuple_update_accessor_cong_assist_def istuple_cons_def simps)
+
+lemma istuple_cons_conj_eqI:
+  "\<lbrakk> (a = c \<and> b = d \<and> P) = Q \<rbrakk> \<Longrightarrow>
+    (istuple_cons isom a b = istuple_cons isom c d \<and> P) = Q"
+  by (clarsimp simp: istuple_cons_def simps)
+
+lemmas intros =
+    istuple_access_update_fst_fst
+    istuple_access_update_snd_snd
+    istuple_access_update_fst_snd
+    istuple_access_update_snd_fst
+    istuple_update_swap_fst_fst
+    istuple_update_swap_snd_snd
+    istuple_update_swap_fst_snd
+    istuple_update_swap_snd_fst
+    istuple_update_compose_fst_fst
+    istuple_update_compose_snd_snd
+    istuple_surjective_proof_assist_step
+    istuple_fst_update_accessor_eq_assist
+    istuple_snd_update_accessor_eq_assist
+    istuple_fst_update_accessor_cong_assist
+    istuple_snd_update_accessor_cong_assist
+    istuple_cons_conj_eqI
+
+end
+
+lemma isomorphic_tuple_intro:
+  assumes repr_inj: "\<And>x y. (repr x = repr y) = (x = y)"
+     and abst_inv: "\<And>z. repr (abst z) = z"
+  shows "v \<equiv> TupleIsomorphism repr abst \<Longrightarrow> isomorphic_tuple v"
+  apply (rule isomorphic_tuple.intro,
+         simp_all add: TupleIsomorphism_def Abs_tuple_isomorphism_inverse
+                       tuple_isomorphism_def abst_inv)
+  apply (cut_tac x="abst (repr x)" and y="x" in repr_inj)
+  apply (simp add: abst_inv)
+  done
+
+definition
+ "tuple_istuple \<equiv> TupleIsomorphism id id"
+
+lemma tuple_istuple:
+  "isomorphic_tuple tuple_istuple"
+  by (simp add: isomorphic_tuple_intro[OF _ _ reflexive] tuple_istuple_def)
+
+lemma refl_conj_eq:
+  "Q = R \<Longrightarrow> (P \<and> Q) = (P \<and> R)"
+  by simp
+
+lemma meta_all_sameI:
+  "(\<And>x. PROP P x \<equiv> PROP Q x) \<Longrightarrow> (\<And>x. PROP P x) \<equiv> (\<And>x. PROP Q x)"
+  by simp
+
+lemma istuple_UNIV_I: "\<And>x. x\<in>UNIV \<equiv> True"
+  by simp
+
+lemma istuple_True_simp: "(True \<Longrightarrow> PROP P) \<equiv> PROP P"
+  by simp
+
 use "Tools/record.ML"
 setup Record.setup