--- a/doc-src/Locales/Locales/Examples3.thy Fri Mar 09 22:05:15 2012 +0100
+++ b/doc-src/Locales/Locales/Examples3.thy Sat Mar 10 16:49:34 2012 +0100
@@ -10,8 +10,8 @@
discharge the premise in the definition of @{text "op \<sqsubset>"}. In
general, proofs of the equations not only may involve definitions
from the interpreted locale but arbitrarily complex arguments in the
- context of the locale. Therefore is would be convenient to have the
- interpreted locale conclusions temporary available in the proof.
+ context of the locale. Therefore it would be convenient to have the
+ interpreted locale conclusions temporarily available in the proof.
This can be achieved by a locale interpretation in the proof body.
The command for local interpretations is \isakeyword{interpret}. We
repeat the example from the previous section to illustrate this. *}
@@ -304,7 +304,8 @@
second lattice.
*}
- context lattice_hom begin
+ context lattice_hom
+ begin
abbreviation meet' (infixl "\<sqinter>''" 50) where "meet' \<equiv> le'.meet"
abbreviation join' (infixl "\<squnion>''" 50) where "join' \<equiv> le'.join"
end
@@ -369,7 +370,8 @@
preserving. As the final example of this section, a locale
interpretation is used to assert this: *}
- sublocale lattice_hom \<subseteq> order_preserving proof unfold_locales
+ sublocale lattice_hom \<subseteq> order_preserving
+ proof unfold_locales
fix x y
assume "x \<sqsubseteq> y"
then have "y = (x \<squnion> y)" by (simp add: le.join_connection)
@@ -481,7 +483,7 @@
locale fun_lattice = fun_partial_order + lattice
sublocale fun_lattice \<subseteq> f: lattice "\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x"
- proof unfold_locales
+ proof unfold_locales
fix f g
have "partial_order.is_inf (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x) f g (\<lambda>x. f x \<sqinter> g x)"
apply (rule is_infI) apply rule+ apply (drule spec, assumption)+ done