changeset 64272 | f76b6dda2e56 |
parent 64267 | b9a1486e79be |
child 64290 | fb5c74a58796 |
--- a/src/HOL/Complex.thy Mon Oct 17 14:37:32 2016 +0200 +++ b/src/HOL/Complex.thy Mon Oct 17 17:33:07 2016 +0200 @@ -486,7 +486,7 @@ lemma complex_cnj_mult [simp]: "cnj (x * y) = cnj x * cnj y" by (simp add: complex_eq_iff) -lemma cnj_setprod [simp]: "cnj (setprod f s) = (\<Prod>x\<in>s. cnj (f x))" +lemma cnj_prod [simp]: "cnj (prod f s) = (\<Prod>x\<in>s. cnj (f x))" by (induct s rule: infinite_finite_induct) auto lemma complex_cnj_inverse [simp]: "cnj (inverse x) = inverse (cnj x)"