src/HOL/HOLCF/IOA/meta_theory/Sequence.thy
changeset 59755 f8d164ab0dc1
parent 51798 ad3a241def73
child 59763 56d2c357e6b5
--- a/src/HOL/HOLCF/IOA/meta_theory/Sequence.thy	Thu Mar 19 17:25:57 2015 +0100
+++ b/src/HOL/HOLCF/IOA/meta_theory/Sequence.thy	Thu Mar 19 22:30:57 2015 +0100
@@ -1081,7 +1081,7 @@
 ML {*
 
 fun Seq_case_tac ctxt s i =
-  res_inst_tac ctxt [(("x", 0), s)] @{thm Seq_cases} i
+  res_inst_tac ctxt [((("x", 0), Position.none), s)] @{thm Seq_cases} i
   THEN hyp_subst_tac ctxt i THEN hyp_subst_tac ctxt (i+1) THEN hyp_subst_tac ctxt (i+2);
 
 (* on a>>s only simp_tac, as full_simp_tac is uncomplete and often causes errors *)
@@ -1093,7 +1093,7 @@
 
 (* rws are definitions to be unfolded for admissibility check *)
 fun Seq_induct_tac ctxt s rws i =
-  res_inst_tac ctxt [(("x", 0), s)] @{thm Seq_induct} i
+  res_inst_tac ctxt [((("x", 0), Position.none), s)] @{thm Seq_induct} i
   THEN (REPEAT_DETERM (CHANGED (asm_simp_tac ctxt (i+1))))
   THEN simp_tac (ctxt addsimps rws) i;
 
@@ -1102,12 +1102,12 @@
   THEN (REPEAT_DETERM (CHANGED (asm_simp_tac ctxt i)));
 
 fun pair_tac ctxt s =
-  res_inst_tac ctxt [(("p", 0), s)] @{thm PairE}
+  res_inst_tac ctxt [((("p", 0), Position.none), s)] @{thm PairE}
   THEN' hyp_subst_tac ctxt THEN' asm_full_simp_tac ctxt;
 
 (* induction on a sequence of pairs with pairsplitting and simplification *)
 fun pair_induct_tac ctxt s rws i =
-  res_inst_tac ctxt [(("x", 0), s)] @{thm Seq_induct} i
+  res_inst_tac ctxt [((("x", 0), Position.none), s)] @{thm Seq_induct} i
   THEN pair_tac ctxt "a" (i+3)
   THEN (REPEAT_DETERM (CHANGED (simp_tac ctxt (i+1))))
   THEN simp_tac (ctxt addsimps rws) i;