src/HOL/Number_Theory/Euclidean_Algorithm.thy
changeset 63924 f91766530e13
parent 63633 2accfb71e33b
child 63947 559f0882d6a6
--- a/src/HOL/Number_Theory/Euclidean_Algorithm.thy	Tue Sep 20 14:51:58 2016 +0200
+++ b/src/HOL/Number_Theory/Euclidean_Algorithm.thy	Sun Sep 18 17:57:55 2016 +0200
@@ -112,23 +112,6 @@
     by (auto intro!: euclidean_size_times_nonunit simp: )
 qed
 
-lemma irreducible_normalized_divisors:
-  assumes "irreducible x" "y dvd x" "normalize y = y"
-  shows   "y = 1 \<or> y = normalize x"
-proof -
-  from assms have "is_unit y \<or> x dvd y" by (auto simp: irreducible_altdef)
-  thus ?thesis
-  proof (elim disjE)
-    assume "is_unit y"
-    hence "normalize y = 1" by (simp add: is_unit_normalize)
-    with assms show ?thesis by simp
-  next
-    assume "x dvd y"
-    with \<open>y dvd x\<close> have "normalize y = normalize x" by (rule associatedI)
-    with assms show ?thesis by simp
-  qed
-qed
-
 function gcd_eucl :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
 where
   "gcd_eucl a b = (if b = 0 then normalize a else gcd_eucl b (a mod b))"
@@ -720,4 +703,4 @@
           semiring_Gcd_class.Gcd_Lcm Gcd_eucl_def abs_mult)+
 qed
 
-end
\ No newline at end of file
+end