| changeset 63648 | f9f3006a5579 | 
| parent 63627 | 6ddb43c6b711 | 
| child 63713 | 009e176e1010 | 
--- a/src/HOL/Deriv.thy Tue Aug 09 23:29:54 2016 +0200 +++ b/src/HOL/Deriv.thy Wed Aug 10 09:33:54 2016 +0200 @@ -1095,7 +1095,7 @@ fix h :: real assume "0 < h" "h < s" "x - h \<in> S" with all [of "x - h"] show "f x < f (x-h)" - proof (simp add: abs_if pos_less_divide_eq dist_real_def split add: if_split_asm) + proof (simp add: abs_if pos_less_divide_eq dist_real_def split: if_split_asm) assume "- ((f (x-h) - f x) / h) < l" and h: "0 < h" with l have "0 < (f (x-h) - f x) / h" by arith