src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy
changeset 68073 fad29d2a17a5
parent 68072 493b818e8e10
parent 68046 6aba668aea78
child 68120 2f161c6910f7
--- a/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy	Wed May 02 13:49:38 2018 +0200
+++ b/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy	Thu May 03 15:07:14 2018 +0200
@@ -244,7 +244,7 @@
       finally have "?\<mu> E - 2*e \<le> ?\<mu> (E - (E \<inter> \<Union>(snd`(p - s))))"
         using \<open>0 < e\<close> \<open>E \<in> sets ?L\<close> tagged_division_ofD(1)[OF p(1)]
         by (subst emeasure_Diff)
-           (auto simp: ennreal_plus[symmetric] top_unique simp del: ennreal_plus
+           (auto simp: top_unique reorient: ennreal_plus
                  intro!: sets.Int sets.finite_UN ennreal_mono_minus intro: p_in_L)
       also have "\<dots> \<le> ?\<mu> (\<Union>x\<in>p \<inter> s. snd x)"
       proof (safe intro!: emeasure_mono subsetI)
@@ -481,7 +481,7 @@
     by (simp add: nn_integral_add)
   with add obtain a b where "0 \<le> a" "0 \<le> b" "(\<integral>\<^sup>+ x. h x \<partial>lborel) = ennreal a" "(\<integral>\<^sup>+ x. g x \<partial>lborel) = ennreal b" "r = a + b"
     by (cases "\<integral>\<^sup>+ x. h x \<partial>lborel" "\<integral>\<^sup>+ x. g x \<partial>lborel" rule: ennreal2_cases)
-       (auto simp: add_top nn_integral_add top_add ennreal_plus[symmetric] simp del: ennreal_plus)
+       (auto simp: add_top nn_integral_add top_add reorient: ennreal_plus)
   with add show ?case
     by (auto intro!: has_integral_add)
 next
@@ -1325,6 +1325,13 @@
     by (simp add: negligible_interval box_eq_empty algebra_simps divide_simps mult_le_0_iff)
 qed
 
+lemma negligible_convex_interior:
+   "convex S \<Longrightarrow> (negligible S \<longleftrightarrow> interior S = {})"
+  apply safe
+  apply (metis interior_subset negligible_subset open_interior open_not_negligible)
+   apply (metis Diff_empty closure_subset frontier_def negligible_convex_frontier negligible_subset)
+  done
+
 lemma measure_eq_0_null_sets: "S \<in> null_sets M \<Longrightarrow> measure M S = 0"
   by (auto simp: measure_def null_sets_def)