--- a/src/HOL/Analysis/Homeomorphism.thy Wed May 02 13:49:38 2018 +0200
+++ b/src/HOL/Analysis/Homeomorphism.thy Thu May 03 15:07:14 2018 +0200
@@ -881,9 +881,8 @@
using aff_dim_convex_Int_open [OF \<open>convex U\<close> open_ball]
by (fastforce simp add: Int_commute)
have "rel_frontier S homeomorphic rel_frontier (ball z 1 \<inter> U)"
- apply (rule homeomorphic_rel_frontiers_convex_bounded_sets)
- apply (auto simp: \<open>affine U\<close> affine_imp_convex convex_Int affdS assms)
- done
+ by (rule homeomorphic_rel_frontiers_convex_bounded_sets)
+ (auto simp: \<open>affine U\<close> affine_imp_convex convex_Int affdS assms)
also have "... = sphere z 1 \<inter> U"
using convex_affine_rel_frontier_Int [of "ball z 1" U]
by (simp add: \<open>affine U\<close> bne)
@@ -903,9 +902,8 @@
by (force simp: h [symmetric] image_comp o_def kh)
qed (auto intro: continuous_on_subset hcon kcon simp: kh hk)
also have "... homeomorphic T"
- apply (rule homeomorphic_punctured_affine_sphere_affine)
- using a him
- by (auto simp: affS affdS \<open>affine T\<close> \<open>affine U\<close> \<open>z \<in> U\<close>)
+ by (rule homeomorphic_punctured_affine_sphere_affine)
+ (use a him in \<open>auto simp: affS affdS \<open>affine T\<close> \<open>affine U\<close> \<open>z \<in> U\<close>\<close>)
finally show ?thesis .
qed
@@ -965,7 +963,7 @@
then obtain f g where fg: "homeomorphism (sphere 0 1 - {i}) {x. i \<bullet> x = 0} f g"
by (force simp: homeomorphic_def)
have "h ` (+) (- a) ` S \<subseteq> T"
- using heq span_clauses(1) span_linear_image by blast
+ using heq span_superset span_linear_image by blast
then have "g ` h ` (+) (- a) ` S \<subseteq> g ` {x. i \<bullet> x = 0}"
using Tsub by (simp add: image_mono)
also have "... \<subseteq> sphere 0 1 - {i}"
@@ -989,8 +987,8 @@
apply (simp add: homeomorphic_def homeomorphism_def)
apply (rule_tac x="g \<circ> h" in exI)
apply (rule_tac x="k \<circ> f" in exI)
- apply (auto simp: ghcont kfcont span_clauses(1) homeomorphism_apply2 [OF fg] image_comp)
- apply (force simp: o_def homeomorphism_apply2 [OF fg] span_clauses(1))
+ apply (auto simp: ghcont kfcont span_superset homeomorphism_apply2 [OF fg] image_comp)
+ apply (force simp: o_def homeomorphism_apply2 [OF fg] span_superset)
done
finally have Shom: "S homeomorphic (g \<circ> h) ` (+) (- a) ` S" .
show ?thesis