src/HOL/Number_Theory/Fib.thy
changeset 60526 fad653acf58f
parent 60141 833adf7db7d8
child 60527 eb431a5651fe
--- a/src/HOL/Number_Theory/Fib.thy	Fri Jun 19 21:33:03 2015 +0200
+++ b/src/HOL/Number_Theory/Fib.thy	Fri Jun 19 21:41:33 2015 +0200
@@ -8,14 +8,14 @@
 Jeremy Avigad.
 *)
 
-section {* Fib *}
+section \<open>Fib\<close>
 
 theory Fib
 imports Main "../GCD" "../Binomial"
 begin
 
 
-subsection {* Fibonacci numbers *}
+subsection \<open>Fibonacci numbers\<close>
 
 fun fib :: "nat \<Rightarrow> nat"
 where
@@ -23,7 +23,7 @@
   | fib1: "fib (Suc 0) = 1"
   | fib2: "fib (Suc (Suc n)) = fib (Suc n) + fib n"
 
-subsection {* Basic Properties *}
+subsection \<open>Basic Properties\<close>
 
 lemma fib_1 [simp]: "fib (1::nat) = 1"
   by (metis One_nat_def fib1)
@@ -41,12 +41,12 @@
 lemma fib_neq_0_nat: "n > 0 \<Longrightarrow> fib n > 0"
   by (induct n rule: fib.induct) (auto simp add: )
 
-subsection {* A Few Elementary Results *}
+subsection \<open>A Few Elementary Results\<close>
 
-text {*
+text \<open>
   \medskip Concrete Mathematics, page 278: Cassini's identity.  The proof is
   much easier using integers, not natural numbers!
-*}
+\<close>
 
 lemma fib_Cassini_int: "int (fib (Suc (Suc n)) * fib n) - int((fib (Suc n))\<^sup>2) = - ((-1)^n)"
   by (induction n rule: fib.induct)  (auto simp add: field_simps power2_eq_square power_add)
@@ -57,7 +57,7 @@
 using fib_Cassini_int [of n] by auto
 
 
-subsection {* Law 6.111 of Concrete Mathematics *}
+subsection \<open>Law 6.111 of Concrete Mathematics\<close>
 
 lemma coprime_fib_Suc_nat: "coprime (fib (n::nat)) (fib (Suc n))"
   apply (induct n rule: fib.induct)
@@ -86,13 +86,13 @@
     case True
     then have "m \<le> n" by auto
     with pos_m have pos_n: "0 < n" by auto
-    with pos_m `m < n` have diff: "n - m < n" by auto
+    with pos_m \<open>m < n\<close> have diff: "n - m < n" by auto
     have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))"
-      by (simp add: mod_if [of n]) (insert `m < n`, auto)
+      by (simp add: mod_if [of n]) (insert \<open>m < n\<close>, auto)
     also have "\<dots> = gcd (fib m)  (fib (n - m))"
       by (simp add: less.hyps diff pos_m)
     also have "\<dots> = gcd (fib m) (fib n)"
-      by (simp add: gcd_fib_diff `m \<le> n`)
+      by (simp add: gcd_fib_diff \<open>m \<le> n\<close>)
     finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" .
   next
     case False
@@ -102,14 +102,14 @@
 qed
 
 lemma fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)"
-    -- {* Law 6.111 *}
+    -- \<open>Law 6.111\<close>
   by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat gcd_commute_nat gcd_fib_mod)
 
 theorem fib_mult_eq_setsum_nat:
     "fib (Suc n) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
   by (induct n rule: nat.induct) (auto simp add:  field_simps)
 
-subsection {* Fibonacci and Binomial Coefficients *}
+subsection \<open>Fibonacci and Binomial Coefficients\<close>
 
 lemma setsum_drop_zero: "(\<Sum>k = 0..Suc n. if 0<k then (f (k - 1)) else 0) = (\<Sum>j = 0..n. f j)"
   by (induct n) auto