--- a/src/HOL/Library/Polynomial.thy Thu Apr 06 08:33:37 2017 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,4453 +0,0 @@
-(* Title: HOL/Library/Polynomial.thy
- Author: Brian Huffman
- Author: Clemens Ballarin
- Author: Amine Chaieb
- Author: Florian Haftmann
-*)
-
-section \<open>Polynomials as type over a ring structure\<close>
-
-theory Polynomial
- imports
- "~~/src/HOL/Deriv"
- More_List
- Infinite_Set
-begin
-
-subsection \<open>Auxiliary: operations for lists (later) representing coefficients\<close>
-
-definition cCons :: "'a::zero \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "##" 65)
- where "x ## xs = (if xs = [] \<and> x = 0 then [] else x # xs)"
-
-lemma cCons_0_Nil_eq [simp]: "0 ## [] = []"
- by (simp add: cCons_def)
-
-lemma cCons_Cons_eq [simp]: "x ## y # ys = x # y # ys"
- by (simp add: cCons_def)
-
-lemma cCons_append_Cons_eq [simp]: "x ## xs @ y # ys = x # xs @ y # ys"
- by (simp add: cCons_def)
-
-lemma cCons_not_0_eq [simp]: "x \<noteq> 0 \<Longrightarrow> x ## xs = x # xs"
- by (simp add: cCons_def)
-
-lemma strip_while_not_0_Cons_eq [simp]:
- "strip_while (\<lambda>x. x = 0) (x # xs) = x ## strip_while (\<lambda>x. x = 0) xs"
-proof (cases "x = 0")
- case False
- then show ?thesis by simp
-next
- case True
- show ?thesis
- proof (induct xs rule: rev_induct)
- case Nil
- with True show ?case by simp
- next
- case (snoc y ys)
- then show ?case
- by (cases "y = 0") (simp_all add: append_Cons [symmetric] del: append_Cons)
- qed
-qed
-
-lemma tl_cCons [simp]: "tl (x ## xs) = xs"
- by (simp add: cCons_def)
-
-
-subsection \<open>Definition of type \<open>poly\<close>\<close>
-
-typedef (overloaded) 'a poly = "{f :: nat \<Rightarrow> 'a::zero. \<forall>\<^sub>\<infinity> n. f n = 0}"
- morphisms coeff Abs_poly
- by (auto intro!: ALL_MOST)
-
-setup_lifting type_definition_poly
-
-lemma poly_eq_iff: "p = q \<longleftrightarrow> (\<forall>n. coeff p n = coeff q n)"
- by (simp add: coeff_inject [symmetric] fun_eq_iff)
-
-lemma poly_eqI: "(\<And>n. coeff p n = coeff q n) \<Longrightarrow> p = q"
- by (simp add: poly_eq_iff)
-
-lemma MOST_coeff_eq_0: "\<forall>\<^sub>\<infinity> n. coeff p n = 0"
- using coeff [of p] by simp
-
-
-subsection \<open>Degree of a polynomial\<close>
-
-definition degree :: "'a::zero poly \<Rightarrow> nat"
- where "degree p = (LEAST n. \<forall>i>n. coeff p i = 0)"
-
-lemma coeff_eq_0:
- assumes "degree p < n"
- shows "coeff p n = 0"
-proof -
- have "\<exists>n. \<forall>i>n. coeff p i = 0"
- using MOST_coeff_eq_0 by (simp add: MOST_nat)
- then have "\<forall>i>degree p. coeff p i = 0"
- unfolding degree_def by (rule LeastI_ex)
- with assms show ?thesis by simp
-qed
-
-lemma le_degree: "coeff p n \<noteq> 0 \<Longrightarrow> n \<le> degree p"
- by (erule contrapos_np, rule coeff_eq_0, simp)
-
-lemma degree_le: "\<forall>i>n. coeff p i = 0 \<Longrightarrow> degree p \<le> n"
- unfolding degree_def by (erule Least_le)
-
-lemma less_degree_imp: "n < degree p \<Longrightarrow> \<exists>i>n. coeff p i \<noteq> 0"
- unfolding degree_def by (drule not_less_Least, simp)
-
-
-subsection \<open>The zero polynomial\<close>
-
-instantiation poly :: (zero) zero
-begin
-
-lift_definition zero_poly :: "'a poly"
- is "\<lambda>_. 0"
- by (rule MOST_I) simp
-
-instance ..
-
-end
-
-lemma coeff_0 [simp]: "coeff 0 n = 0"
- by transfer rule
-
-lemma degree_0 [simp]: "degree 0 = 0"
- by (rule order_antisym [OF degree_le le0]) simp
-
-lemma leading_coeff_neq_0:
- assumes "p \<noteq> 0"
- shows "coeff p (degree p) \<noteq> 0"
-proof (cases "degree p")
- case 0
- from \<open>p \<noteq> 0\<close> obtain n where "coeff p n \<noteq> 0"
- by (auto simp add: poly_eq_iff)
- then have "n \<le> degree p"
- by (rule le_degree)
- with \<open>coeff p n \<noteq> 0\<close> and \<open>degree p = 0\<close> show "coeff p (degree p) \<noteq> 0"
- by simp
-next
- case (Suc n)
- from \<open>degree p = Suc n\<close> have "n < degree p"
- by simp
- then have "\<exists>i>n. coeff p i \<noteq> 0"
- by (rule less_degree_imp)
- then obtain i where "n < i" and "coeff p i \<noteq> 0"
- by blast
- from \<open>degree p = Suc n\<close> and \<open>n < i\<close> have "degree p \<le> i"
- by simp
- also from \<open>coeff p i \<noteq> 0\<close> have "i \<le> degree p"
- by (rule le_degree)
- finally have "degree p = i" .
- with \<open>coeff p i \<noteq> 0\<close> show "coeff p (degree p) \<noteq> 0" by simp
-qed
-
-lemma leading_coeff_0_iff [simp]: "coeff p (degree p) = 0 \<longleftrightarrow> p = 0"
- by (cases "p = 0") (simp_all add: leading_coeff_neq_0)
-
-lemma eq_zero_or_degree_less:
- assumes "degree p \<le> n" and "coeff p n = 0"
- shows "p = 0 \<or> degree p < n"
-proof (cases n)
- case 0
- with \<open>degree p \<le> n\<close> and \<open>coeff p n = 0\<close> have "coeff p (degree p) = 0"
- by simp
- then have "p = 0" by simp
- then show ?thesis ..
-next
- case (Suc m)
- from \<open>degree p \<le> n\<close> have "\<forall>i>n. coeff p i = 0"
- by (simp add: coeff_eq_0)
- with \<open>coeff p n = 0\<close> have "\<forall>i\<ge>n. coeff p i = 0"
- by (simp add: le_less)
- with \<open>n = Suc m\<close> have "\<forall>i>m. coeff p i = 0"
- by (simp add: less_eq_Suc_le)
- then have "degree p \<le> m"
- by (rule degree_le)
- with \<open>n = Suc m\<close> have "degree p < n"
- by (simp add: less_Suc_eq_le)
- then show ?thesis ..
-qed
-
-lemma coeff_0_degree_minus_1: "coeff rrr dr = 0 \<Longrightarrow> degree rrr \<le> dr \<Longrightarrow> degree rrr \<le> dr - 1"
- using eq_zero_or_degree_less by fastforce
-
-
-subsection \<open>List-style constructor for polynomials\<close>
-
-lift_definition pCons :: "'a::zero \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
- is "\<lambda>a p. case_nat a (coeff p)"
- by (rule MOST_SucD) (simp add: MOST_coeff_eq_0)
-
-lemmas coeff_pCons = pCons.rep_eq
-
-lemma coeff_pCons_0 [simp]: "coeff (pCons a p) 0 = a"
- by transfer simp
-
-lemma coeff_pCons_Suc [simp]: "coeff (pCons a p) (Suc n) = coeff p n"
- by (simp add: coeff_pCons)
-
-lemma degree_pCons_le: "degree (pCons a p) \<le> Suc (degree p)"
- by (rule degree_le) (simp add: coeff_eq_0 coeff_pCons split: nat.split)
-
-lemma degree_pCons_eq: "p \<noteq> 0 \<Longrightarrow> degree (pCons a p) = Suc (degree p)"
- apply (rule order_antisym [OF degree_pCons_le])
- apply (rule le_degree, simp)
- done
-
-lemma degree_pCons_0: "degree (pCons a 0) = 0"
- apply (rule order_antisym [OF _ le0])
- apply (rule degree_le, simp add: coeff_pCons split: nat.split)
- done
-
-lemma degree_pCons_eq_if [simp]: "degree (pCons a p) = (if p = 0 then 0 else Suc (degree p))"
- apply (cases "p = 0", simp_all)
- apply (rule order_antisym [OF _ le0])
- apply (rule degree_le, simp add: coeff_pCons split: nat.split)
- apply (rule order_antisym [OF degree_pCons_le])
- apply (rule le_degree, simp)
- done
-
-lemma pCons_0_0 [simp]: "pCons 0 0 = 0"
- by (rule poly_eqI) (simp add: coeff_pCons split: nat.split)
-
-lemma pCons_eq_iff [simp]: "pCons a p = pCons b q \<longleftrightarrow> a = b \<and> p = q"
-proof safe
- assume "pCons a p = pCons b q"
- then have "coeff (pCons a p) 0 = coeff (pCons b q) 0"
- by simp
- then show "a = b"
- by simp
-next
- assume "pCons a p = pCons b q"
- then have "coeff (pCons a p) (Suc n) = coeff (pCons b q) (Suc n)" for n
- by simp
- then show "p = q"
- by (simp add: poly_eq_iff)
-qed
-
-lemma pCons_eq_0_iff [simp]: "pCons a p = 0 \<longleftrightarrow> a = 0 \<and> p = 0"
- using pCons_eq_iff [of a p 0 0] by simp
-
-lemma pCons_cases [cases type: poly]:
- obtains (pCons) a q where "p = pCons a q"
-proof
- show "p = pCons (coeff p 0) (Abs_poly (\<lambda>n. coeff p (Suc n)))"
- by transfer
- (simp_all add: MOST_inj[where f=Suc and P="\<lambda>n. p n = 0" for p] fun_eq_iff Abs_poly_inverse
- split: nat.split)
-qed
-
-lemma pCons_induct [case_names 0 pCons, induct type: poly]:
- assumes zero: "P 0"
- assumes pCons: "\<And>a p. a \<noteq> 0 \<or> p \<noteq> 0 \<Longrightarrow> P p \<Longrightarrow> P (pCons a p)"
- shows "P p"
-proof (induct p rule: measure_induct_rule [where f=degree])
- case (less p)
- obtain a q where "p = pCons a q" by (rule pCons_cases)
- have "P q"
- proof (cases "q = 0")
- case True
- then show "P q" by (simp add: zero)
- next
- case False
- then have "degree (pCons a q) = Suc (degree q)"
- by (rule degree_pCons_eq)
- with \<open>p = pCons a q\<close> have "degree q < degree p"
- by simp
- then show "P q"
- by (rule less.hyps)
- qed
- have "P (pCons a q)"
- proof (cases "a \<noteq> 0 \<or> q \<noteq> 0")
- case True
- with \<open>P q\<close> show ?thesis by (auto intro: pCons)
- next
- case False
- with zero show ?thesis by simp
- qed
- with \<open>p = pCons a q\<close> show ?case
- by simp
-qed
-
-lemma degree_eq_zeroE:
- fixes p :: "'a::zero poly"
- assumes "degree p = 0"
- obtains a where "p = pCons a 0"
-proof -
- obtain a q where p: "p = pCons a q"
- by (cases p)
- with assms have "q = 0"
- by (cases "q = 0") simp_all
- with p have "p = pCons a 0"
- by simp
- then show thesis ..
-qed
-
-
-subsection \<open>Quickcheck generator for polynomials\<close>
-
-quickcheck_generator poly constructors: "0 :: _ poly", pCons
-
-
-subsection \<open>List-style syntax for polynomials\<close>
-
-syntax "_poly" :: "args \<Rightarrow> 'a poly" ("[:(_):]")
-translations
- "[:x, xs:]" \<rightleftharpoons> "CONST pCons x [:xs:]"
- "[:x:]" \<rightleftharpoons> "CONST pCons x 0"
- "[:x:]" \<leftharpoondown> "CONST pCons x (_constrain 0 t)"
-
-
-subsection \<open>Representation of polynomials by lists of coefficients\<close>
-
-primrec Poly :: "'a::zero list \<Rightarrow> 'a poly"
- where
- [code_post]: "Poly [] = 0"
- | [code_post]: "Poly (a # as) = pCons a (Poly as)"
-
-lemma Poly_replicate_0 [simp]: "Poly (replicate n 0) = 0"
- by (induct n) simp_all
-
-lemma Poly_eq_0: "Poly as = 0 \<longleftrightarrow> (\<exists>n. as = replicate n 0)"
- by (induct as) (auto simp add: Cons_replicate_eq)
-
-lemma Poly_append_replicate_zero [simp]: "Poly (as @ replicate n 0) = Poly as"
- by (induct as) simp_all
-
-lemma Poly_snoc_zero [simp]: "Poly (as @ [0]) = Poly as"
- using Poly_append_replicate_zero [of as 1] by simp
-
-lemma Poly_cCons_eq_pCons_Poly [simp]: "Poly (a ## p) = pCons a (Poly p)"
- by (simp add: cCons_def)
-
-lemma Poly_on_rev_starting_with_0 [simp]: "hd as = 0 \<Longrightarrow> Poly (rev (tl as)) = Poly (rev as)"
- by (cases as) simp_all
-
-lemma degree_Poly: "degree (Poly xs) \<le> length xs"
- by (induct xs) simp_all
-
-lemma coeff_Poly_eq [simp]: "coeff (Poly xs) = nth_default 0 xs"
- by (induct xs) (simp_all add: fun_eq_iff coeff_pCons split: nat.splits)
-
-definition coeffs :: "'a poly \<Rightarrow> 'a::zero list"
- where "coeffs p = (if p = 0 then [] else map (\<lambda>i. coeff p i) [0 ..< Suc (degree p)])"
-
-lemma coeffs_eq_Nil [simp]: "coeffs p = [] \<longleftrightarrow> p = 0"
- by (simp add: coeffs_def)
-
-lemma not_0_coeffs_not_Nil: "p \<noteq> 0 \<Longrightarrow> coeffs p \<noteq> []"
- by simp
-
-lemma coeffs_0_eq_Nil [simp]: "coeffs 0 = []"
- by simp
-
-lemma coeffs_pCons_eq_cCons [simp]: "coeffs (pCons a p) = a ## coeffs p"
-proof -
- have *: "\<forall>m\<in>set ms. m > 0 \<Longrightarrow> map (case_nat x f) ms = map f (map (\<lambda>n. n - 1) ms)"
- for ms :: "nat list" and f :: "nat \<Rightarrow> 'a" and x :: "'a"
- by (induct ms) (auto split: nat.split)
- show ?thesis
- by (simp add: * coeffs_def upt_conv_Cons coeff_pCons map_decr_upt del: upt_Suc)
-qed
-
-lemma length_coeffs: "p \<noteq> 0 \<Longrightarrow> length (coeffs p) = degree p + 1"
- by (simp add: coeffs_def)
-
-lemma coeffs_nth: "p \<noteq> 0 \<Longrightarrow> n \<le> degree p \<Longrightarrow> coeffs p ! n = coeff p n"
- by (auto simp: coeffs_def simp del: upt_Suc)
-
-lemma coeff_in_coeffs: "p \<noteq> 0 \<Longrightarrow> n \<le> degree p \<Longrightarrow> coeff p n \<in> set (coeffs p)"
- using coeffs_nth [of p n, symmetric] by (simp add: length_coeffs)
-
-lemma not_0_cCons_eq [simp]: "p \<noteq> 0 \<Longrightarrow> a ## coeffs p = a # coeffs p"
- by (simp add: cCons_def)
-
-lemma Poly_coeffs [simp, code abstype]: "Poly (coeffs p) = p"
- by (induct p) auto
-
-lemma coeffs_Poly [simp]: "coeffs (Poly as) = strip_while (HOL.eq 0) as"
-proof (induct as)
- case Nil
- then show ?case by simp
-next
- case (Cons a as)
- from replicate_length_same [of as 0] have "(\<forall>n. as \<noteq> replicate n 0) \<longleftrightarrow> (\<exists>a\<in>set as. a \<noteq> 0)"
- by (auto dest: sym [of _ as])
- with Cons show ?case by auto
-qed
-
-lemma no_trailing_coeffs [simp]:
- "no_trailing (HOL.eq 0) (coeffs p)"
- by (induct p) auto
-
-lemma strip_while_coeffs [simp]:
- "strip_while (HOL.eq 0) (coeffs p) = coeffs p"
- by simp
-
-lemma coeffs_eq_iff: "p = q \<longleftrightarrow> coeffs p = coeffs q"
- (is "?P \<longleftrightarrow> ?Q")
-proof
- assume ?P
- then show ?Q by simp
-next
- assume ?Q
- then have "Poly (coeffs p) = Poly (coeffs q)" by simp
- then show ?P by simp
-qed
-
-lemma nth_default_coeffs_eq: "nth_default 0 (coeffs p) = coeff p"
- by (simp add: fun_eq_iff coeff_Poly_eq [symmetric])
-
-lemma [code]: "coeff p = nth_default 0 (coeffs p)"
- by (simp add: nth_default_coeffs_eq)
-
-lemma coeffs_eqI:
- assumes coeff: "\<And>n. coeff p n = nth_default 0 xs n"
- assumes zero: "no_trailing (HOL.eq 0) xs"
- shows "coeffs p = xs"
-proof -
- from coeff have "p = Poly xs"
- by (simp add: poly_eq_iff)
- with zero show ?thesis by simp
-qed
-
-lemma degree_eq_length_coeffs [code]: "degree p = length (coeffs p) - 1"
- by (simp add: coeffs_def)
-
-lemma length_coeffs_degree: "p \<noteq> 0 \<Longrightarrow> length (coeffs p) = Suc (degree p)"
- by (induct p) (auto simp: cCons_def)
-
-lemma [code abstract]: "coeffs 0 = []"
- by (fact coeffs_0_eq_Nil)
-
-lemma [code abstract]: "coeffs (pCons a p) = a ## coeffs p"
- by (fact coeffs_pCons_eq_cCons)
-
-instantiation poly :: ("{zero, equal}") equal
-begin
-
-definition [code]: "HOL.equal (p::'a poly) q \<longleftrightarrow> HOL.equal (coeffs p) (coeffs q)"
-
-instance
- by standard (simp add: equal equal_poly_def coeffs_eq_iff)
-
-end
-
-lemma [code nbe]: "HOL.equal (p :: _ poly) p \<longleftrightarrow> True"
- by (fact equal_refl)
-
-definition is_zero :: "'a::zero poly \<Rightarrow> bool"
- where [code]: "is_zero p \<longleftrightarrow> List.null (coeffs p)"
-
-lemma is_zero_null [code_abbrev]: "is_zero p \<longleftrightarrow> p = 0"
- by (simp add: is_zero_def null_def)
-
-
-subsubsection \<open>Reconstructing the polynomial from the list\<close>
- \<comment> \<open>contributed by Sebastiaan J.C. Joosten and René Thiemann\<close>
-
-definition poly_of_list :: "'a::comm_monoid_add list \<Rightarrow> 'a poly"
- where [simp]: "poly_of_list = Poly"
-
-lemma poly_of_list_impl [code abstract]: "coeffs (poly_of_list as) = strip_while (HOL.eq 0) as"
- by simp
-
-
-subsection \<open>Fold combinator for polynomials\<close>
-
-definition fold_coeffs :: "('a::zero \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a poly \<Rightarrow> 'b \<Rightarrow> 'b"
- where "fold_coeffs f p = foldr f (coeffs p)"
-
-lemma fold_coeffs_0_eq [simp]: "fold_coeffs f 0 = id"
- by (simp add: fold_coeffs_def)
-
-lemma fold_coeffs_pCons_eq [simp]: "f 0 = id \<Longrightarrow> fold_coeffs f (pCons a p) = f a \<circ> fold_coeffs f p"
- by (simp add: fold_coeffs_def cCons_def fun_eq_iff)
-
-lemma fold_coeffs_pCons_0_0_eq [simp]: "fold_coeffs f (pCons 0 0) = id"
- by (simp add: fold_coeffs_def)
-
-lemma fold_coeffs_pCons_coeff_not_0_eq [simp]:
- "a \<noteq> 0 \<Longrightarrow> fold_coeffs f (pCons a p) = f a \<circ> fold_coeffs f p"
- by (simp add: fold_coeffs_def)
-
-lemma fold_coeffs_pCons_not_0_0_eq [simp]:
- "p \<noteq> 0 \<Longrightarrow> fold_coeffs f (pCons a p) = f a \<circ> fold_coeffs f p"
- by (simp add: fold_coeffs_def)
-
-
-subsection \<open>Canonical morphism on polynomials -- evaluation\<close>
-
-definition poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a"
- where "poly p = fold_coeffs (\<lambda>a f x. a + x * f x) p (\<lambda>x. 0)" \<comment> \<open>The Horner Schema\<close>
-
-lemma poly_0 [simp]: "poly 0 x = 0"
- by (simp add: poly_def)
-
-lemma poly_pCons [simp]: "poly (pCons a p) x = a + x * poly p x"
- by (cases "p = 0 \<and> a = 0") (auto simp add: poly_def)
-
-lemma poly_altdef: "poly p x = (\<Sum>i\<le>degree p. coeff p i * x ^ i)"
- for x :: "'a::{comm_semiring_0,semiring_1}"
-proof (induction p rule: pCons_induct)
- case 0
- then show ?case
- by simp
-next
- case (pCons a p)
- show ?case
- proof (cases "p = 0")
- case True
- then show ?thesis by simp
- next
- case False
- let ?p' = "pCons a p"
- note poly_pCons[of a p x]
- also note pCons.IH
- also have "a + x * (\<Sum>i\<le>degree p. coeff p i * x ^ i) =
- coeff ?p' 0 * x^0 + (\<Sum>i\<le>degree p. coeff ?p' (Suc i) * x^Suc i)"
- by (simp add: field_simps sum_distrib_left coeff_pCons)
- also note sum_atMost_Suc_shift[symmetric]
- also note degree_pCons_eq[OF \<open>p \<noteq> 0\<close>, of a, symmetric]
- finally show ?thesis .
- qed
-qed
-
-lemma poly_0_coeff_0: "poly p 0 = coeff p 0"
- by (cases p) (auto simp: poly_altdef)
-
-
-subsection \<open>Monomials\<close>
-
-lift_definition monom :: "'a \<Rightarrow> nat \<Rightarrow> 'a::zero poly"
- is "\<lambda>a m n. if m = n then a else 0"
- by (simp add: MOST_iff_cofinite)
-
-lemma coeff_monom [simp]: "coeff (monom a m) n = (if m = n then a else 0)"
- by transfer rule
-
-lemma monom_0: "monom a 0 = pCons a 0"
- by (rule poly_eqI) (simp add: coeff_pCons split: nat.split)
-
-lemma monom_Suc: "monom a (Suc n) = pCons 0 (monom a n)"
- by (rule poly_eqI) (simp add: coeff_pCons split: nat.split)
-
-lemma monom_eq_0 [simp]: "monom 0 n = 0"
- by (rule poly_eqI) simp
-
-lemma monom_eq_0_iff [simp]: "monom a n = 0 \<longleftrightarrow> a = 0"
- by (simp add: poly_eq_iff)
-
-lemma monom_eq_iff [simp]: "monom a n = monom b n \<longleftrightarrow> a = b"
- by (simp add: poly_eq_iff)
-
-lemma degree_monom_le: "degree (monom a n) \<le> n"
- by (rule degree_le, simp)
-
-lemma degree_monom_eq: "a \<noteq> 0 \<Longrightarrow> degree (monom a n) = n"
- apply (rule order_antisym [OF degree_monom_le])
- apply (rule le_degree)
- apply simp
- done
-
-lemma coeffs_monom [code abstract]:
- "coeffs (monom a n) = (if a = 0 then [] else replicate n 0 @ [a])"
- by (induct n) (simp_all add: monom_0 monom_Suc)
-
-lemma fold_coeffs_monom [simp]: "a \<noteq> 0 \<Longrightarrow> fold_coeffs f (monom a n) = f 0 ^^ n \<circ> f a"
- by (simp add: fold_coeffs_def coeffs_monom fun_eq_iff)
-
-lemma poly_monom: "poly (monom a n) x = a * x ^ n"
- for a x :: "'a::comm_semiring_1"
- by (cases "a = 0", simp_all) (induct n, simp_all add: mult.left_commute poly_def)
-
-lemma monom_eq_iff': "monom c n = monom d m \<longleftrightarrow> c = d \<and> (c = 0 \<or> n = m)"
- by (auto simp: poly_eq_iff)
-
-lemma monom_eq_const_iff: "monom c n = [:d:] \<longleftrightarrow> c = d \<and> (c = 0 \<or> n = 0)"
- using monom_eq_iff'[of c n d 0] by (simp add: monom_0)
-
-
-subsection \<open>Leading coefficient\<close>
-
-abbreviation lead_coeff:: "'a::zero poly \<Rightarrow> 'a"
- where "lead_coeff p \<equiv> coeff p (degree p)"
-
-lemma lead_coeff_pCons[simp]:
- "p \<noteq> 0 \<Longrightarrow> lead_coeff (pCons a p) = lead_coeff p"
- "p = 0 \<Longrightarrow> lead_coeff (pCons a p) = a"
- by auto
-
-lemma lead_coeff_monom [simp]: "lead_coeff (monom c n) = c"
- by (cases "c = 0") (simp_all add: degree_monom_eq)
-
-
-subsection \<open>Addition and subtraction\<close>
-
-instantiation poly :: (comm_monoid_add) comm_monoid_add
-begin
-
-lift_definition plus_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
- is "\<lambda>p q n. coeff p n + coeff q n"
-proof -
- fix q p :: "'a poly"
- show "\<forall>\<^sub>\<infinity>n. coeff p n + coeff q n = 0"
- using MOST_coeff_eq_0[of p] MOST_coeff_eq_0[of q] by eventually_elim simp
-qed
-
-lemma coeff_add [simp]: "coeff (p + q) n = coeff p n + coeff q n"
- by (simp add: plus_poly.rep_eq)
-
-instance
-proof
- fix p q r :: "'a poly"
- show "(p + q) + r = p + (q + r)"
- by (simp add: poly_eq_iff add.assoc)
- show "p + q = q + p"
- by (simp add: poly_eq_iff add.commute)
- show "0 + p = p"
- by (simp add: poly_eq_iff)
-qed
-
-end
-
-instantiation poly :: (cancel_comm_monoid_add) cancel_comm_monoid_add
-begin
-
-lift_definition minus_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
- is "\<lambda>p q n. coeff p n - coeff q n"
-proof -
- fix q p :: "'a poly"
- show "\<forall>\<^sub>\<infinity>n. coeff p n - coeff q n = 0"
- using MOST_coeff_eq_0[of p] MOST_coeff_eq_0[of q] by eventually_elim simp
-qed
-
-lemma coeff_diff [simp]: "coeff (p - q) n = coeff p n - coeff q n"
- by (simp add: minus_poly.rep_eq)
-
-instance
-proof
- fix p q r :: "'a poly"
- show "p + q - p = q"
- by (simp add: poly_eq_iff)
- show "p - q - r = p - (q + r)"
- by (simp add: poly_eq_iff diff_diff_eq)
-qed
-
-end
-
-instantiation poly :: (ab_group_add) ab_group_add
-begin
-
-lift_definition uminus_poly :: "'a poly \<Rightarrow> 'a poly"
- is "\<lambda>p n. - coeff p n"
-proof -
- fix p :: "'a poly"
- show "\<forall>\<^sub>\<infinity>n. - coeff p n = 0"
- using MOST_coeff_eq_0 by simp
-qed
-
-lemma coeff_minus [simp]: "coeff (- p) n = - coeff p n"
- by (simp add: uminus_poly.rep_eq)
-
-instance
-proof
- fix p q :: "'a poly"
- show "- p + p = 0"
- by (simp add: poly_eq_iff)
- show "p - q = p + - q"
- by (simp add: poly_eq_iff)
-qed
-
-end
-
-lemma add_pCons [simp]: "pCons a p + pCons b q = pCons (a + b) (p + q)"
- by (rule poly_eqI) (simp add: coeff_pCons split: nat.split)
-
-lemma minus_pCons [simp]: "- pCons a p = pCons (- a) (- p)"
- by (rule poly_eqI) (simp add: coeff_pCons split: nat.split)
-
-lemma diff_pCons [simp]: "pCons a p - pCons b q = pCons (a - b) (p - q)"
- by (rule poly_eqI) (simp add: coeff_pCons split: nat.split)
-
-lemma degree_add_le_max: "degree (p + q) \<le> max (degree p) (degree q)"
- by (rule degree_le) (auto simp add: coeff_eq_0)
-
-lemma degree_add_le: "degree p \<le> n \<Longrightarrow> degree q \<le> n \<Longrightarrow> degree (p + q) \<le> n"
- by (auto intro: order_trans degree_add_le_max)
-
-lemma degree_add_less: "degree p < n \<Longrightarrow> degree q < n \<Longrightarrow> degree (p + q) < n"
- by (auto intro: le_less_trans degree_add_le_max)
-
-lemma degree_add_eq_right: "degree p < degree q \<Longrightarrow> degree (p + q) = degree q"
- apply (cases "q = 0")
- apply simp
- apply (rule order_antisym)
- apply (simp add: degree_add_le)
- apply (rule le_degree)
- apply (simp add: coeff_eq_0)
- done
-
-lemma degree_add_eq_left: "degree q < degree p \<Longrightarrow> degree (p + q) = degree p"
- using degree_add_eq_right [of q p] by (simp add: add.commute)
-
-lemma degree_minus [simp]: "degree (- p) = degree p"
- by (simp add: degree_def)
-
-lemma lead_coeff_add_le: "degree p < degree q \<Longrightarrow> lead_coeff (p + q) = lead_coeff q"
- by (metis coeff_add coeff_eq_0 monoid_add_class.add.left_neutral degree_add_eq_right)
-
-lemma lead_coeff_minus: "lead_coeff (- p) = - lead_coeff p"
- by (metis coeff_minus degree_minus)
-
-lemma degree_diff_le_max: "degree (p - q) \<le> max (degree p) (degree q)"
- for p q :: "'a::ab_group_add poly"
- using degree_add_le [where p=p and q="-q"] by simp
-
-lemma degree_diff_le: "degree p \<le> n \<Longrightarrow> degree q \<le> n \<Longrightarrow> degree (p - q) \<le> n"
- for p q :: "'a::ab_group_add poly"
- using degree_add_le [of p n "- q"] by simp
-
-lemma degree_diff_less: "degree p < n \<Longrightarrow> degree q < n \<Longrightarrow> degree (p - q) < n"
- for p q :: "'a::ab_group_add poly"
- using degree_add_less [of p n "- q"] by simp
-
-lemma add_monom: "monom a n + monom b n = monom (a + b) n"
- by (rule poly_eqI) simp
-
-lemma diff_monom: "monom a n - monom b n = monom (a - b) n"
- by (rule poly_eqI) simp
-
-lemma minus_monom: "- monom a n = monom (- a) n"
- by (rule poly_eqI) simp
-
-lemma coeff_sum: "coeff (\<Sum>x\<in>A. p x) i = (\<Sum>x\<in>A. coeff (p x) i)"
- by (induct A rule: infinite_finite_induct) simp_all
-
-lemma monom_sum: "monom (\<Sum>x\<in>A. a x) n = (\<Sum>x\<in>A. monom (a x) n)"
- by (rule poly_eqI) (simp add: coeff_sum)
-
-fun plus_coeffs :: "'a::comm_monoid_add list \<Rightarrow> 'a list \<Rightarrow> 'a list"
- where
- "plus_coeffs xs [] = xs"
- | "plus_coeffs [] ys = ys"
- | "plus_coeffs (x # xs) (y # ys) = (x + y) ## plus_coeffs xs ys"
-
-lemma coeffs_plus_eq_plus_coeffs [code abstract]:
- "coeffs (p + q) = plus_coeffs (coeffs p) (coeffs q)"
-proof -
- have *: "nth_default 0 (plus_coeffs xs ys) n = nth_default 0 xs n + nth_default 0 ys n"
- for xs ys :: "'a list" and n
- proof (induct xs ys arbitrary: n rule: plus_coeffs.induct)
- case (3 x xs y ys n)
- then show ?case
- by (cases n) (auto simp add: cCons_def)
- qed simp_all
- have **: "no_trailing (HOL.eq 0) (plus_coeffs xs ys)"
- if "no_trailing (HOL.eq 0) xs" and "no_trailing (HOL.eq 0) ys"
- for xs ys :: "'a list"
- using that by (induct xs ys rule: plus_coeffs.induct) (simp_all add: cCons_def)
- show ?thesis
- by (rule coeffs_eqI) (auto simp add: * nth_default_coeffs_eq intro: **)
-qed
-
-lemma coeffs_uminus [code abstract]:
- "coeffs (- p) = map uminus (coeffs p)"
-proof -
- have eq_0: "HOL.eq 0 \<circ> uminus = HOL.eq (0::'a)"
- by (simp add: fun_eq_iff)
- show ?thesis
- by (rule coeffs_eqI) (simp_all add: nth_default_map_eq nth_default_coeffs_eq no_trailing_map eq_0)
-qed
-
-lemma [code]: "p - q = p + - q"
- for p q :: "'a::ab_group_add poly"
- by (fact diff_conv_add_uminus)
-
-lemma poly_add [simp]: "poly (p + q) x = poly p x + poly q x"
- apply (induct p arbitrary: q)
- apply simp
- apply (case_tac q, simp, simp add: algebra_simps)
- done
-
-lemma poly_minus [simp]: "poly (- p) x = - poly p x"
- for x :: "'a::comm_ring"
- by (induct p) simp_all
-
-lemma poly_diff [simp]: "poly (p - q) x = poly p x - poly q x"
- for x :: "'a::comm_ring"
- using poly_add [of p "- q" x] by simp
-
-lemma poly_sum: "poly (\<Sum>k\<in>A. p k) x = (\<Sum>k\<in>A. poly (p k) x)"
- by (induct A rule: infinite_finite_induct) simp_all
-
-lemma degree_sum_le: "finite S \<Longrightarrow> (\<And>p. p \<in> S \<Longrightarrow> degree (f p) \<le> n) \<Longrightarrow> degree (sum f S) \<le> n"
-proof (induct S rule: finite_induct)
- case empty
- then show ?case by simp
-next
- case (insert p S)
- then have "degree (sum f S) \<le> n" "degree (f p) \<le> n"
- by auto
- then show ?case
- unfolding sum.insert[OF insert(1-2)] by (metis degree_add_le)
-qed
-
-lemma poly_as_sum_of_monoms':
- assumes "degree p \<le> n"
- shows "(\<Sum>i\<le>n. monom (coeff p i) i) = p"
-proof -
- have eq: "\<And>i. {..n} \<inter> {i} = (if i \<le> n then {i} else {})"
- by auto
- from assms show ?thesis
- by (simp add: poly_eq_iff coeff_sum coeff_eq_0 sum.If_cases eq
- if_distrib[where f="\<lambda>x. x * a" for a])
-qed
-
-lemma poly_as_sum_of_monoms: "(\<Sum>i\<le>degree p. monom (coeff p i) i) = p"
- by (intro poly_as_sum_of_monoms' order_refl)
-
-lemma Poly_snoc: "Poly (xs @ [x]) = Poly xs + monom x (length xs)"
- by (induct xs) (simp_all add: monom_0 monom_Suc)
-
-
-subsection \<open>Multiplication by a constant, polynomial multiplication and the unit polynomial\<close>
-
-lift_definition smult :: "'a::comm_semiring_0 \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
- is "\<lambda>a p n. a * coeff p n"
-proof -
- fix a :: 'a and p :: "'a poly"
- show "\<forall>\<^sub>\<infinity> i. a * coeff p i = 0"
- using MOST_coeff_eq_0[of p] by eventually_elim simp
-qed
-
-lemma coeff_smult [simp]: "coeff (smult a p) n = a * coeff p n"
- by (simp add: smult.rep_eq)
-
-lemma degree_smult_le: "degree (smult a p) \<le> degree p"
- by (rule degree_le) (simp add: coeff_eq_0)
-
-lemma smult_smult [simp]: "smult a (smult b p) = smult (a * b) p"
- by (rule poly_eqI) (simp add: mult.assoc)
-
-lemma smult_0_right [simp]: "smult a 0 = 0"
- by (rule poly_eqI) simp
-
-lemma smult_0_left [simp]: "smult 0 p = 0"
- by (rule poly_eqI) simp
-
-lemma smult_1_left [simp]: "smult (1::'a::comm_semiring_1) p = p"
- by (rule poly_eqI) simp
-
-lemma smult_add_right: "smult a (p + q) = smult a p + smult a q"
- by (rule poly_eqI) (simp add: algebra_simps)
-
-lemma smult_add_left: "smult (a + b) p = smult a p + smult b p"
- by (rule poly_eqI) (simp add: algebra_simps)
-
-lemma smult_minus_right [simp]: "smult a (- p) = - smult a p"
- for a :: "'a::comm_ring"
- by (rule poly_eqI) simp
-
-lemma smult_minus_left [simp]: "smult (- a) p = - smult a p"
- for a :: "'a::comm_ring"
- by (rule poly_eqI) simp
-
-lemma smult_diff_right: "smult a (p - q) = smult a p - smult a q"
- for a :: "'a::comm_ring"
- by (rule poly_eqI) (simp add: algebra_simps)
-
-lemma smult_diff_left: "smult (a - b) p = smult a p - smult b p"
- for a b :: "'a::comm_ring"
- by (rule poly_eqI) (simp add: algebra_simps)
-
-lemmas smult_distribs =
- smult_add_left smult_add_right
- smult_diff_left smult_diff_right
-
-lemma smult_pCons [simp]: "smult a (pCons b p) = pCons (a * b) (smult a p)"
- by (rule poly_eqI) (simp add: coeff_pCons split: nat.split)
-
-lemma smult_monom: "smult a (monom b n) = monom (a * b) n"
- by (induct n) (simp_all add: monom_0 monom_Suc)
-
-lemma smult_Poly: "smult c (Poly xs) = Poly (map (op * c) xs)"
- by (auto simp: poly_eq_iff nth_default_def)
-
-lemma degree_smult_eq [simp]: "degree (smult a p) = (if a = 0 then 0 else degree p)"
- for a :: "'a::{comm_semiring_0,semiring_no_zero_divisors}"
- by (cases "a = 0") (simp_all add: degree_def)
-
-lemma smult_eq_0_iff [simp]: "smult a p = 0 \<longleftrightarrow> a = 0 \<or> p = 0"
- for a :: "'a::{comm_semiring_0,semiring_no_zero_divisors}"
- by (simp add: poly_eq_iff)
-
-lemma coeffs_smult [code abstract]:
- "coeffs (smult a p) = (if a = 0 then [] else map (Groups.times a) (coeffs p))"
- for p :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly"
-proof -
- have eq_0: "HOL.eq 0 \<circ> times a = HOL.eq (0::'a)" if "a \<noteq> 0"
- using that by (simp add: fun_eq_iff)
- show ?thesis
- by (rule coeffs_eqI) (auto simp add: no_trailing_map nth_default_map_eq nth_default_coeffs_eq eq_0)
-qed
-
-lemma smult_eq_iff:
- fixes b :: "'a :: field"
- assumes "b \<noteq> 0"
- shows "smult a p = smult b q \<longleftrightarrow> smult (a / b) p = q"
- (is "?lhs \<longleftrightarrow> ?rhs")
-proof
- assume ?lhs
- also from assms have "smult (inverse b) \<dots> = q"
- by simp
- finally show ?rhs
- by (simp add: field_simps)
-next
- assume ?rhs
- with assms show ?lhs by auto
-qed
-
-instantiation poly :: (comm_semiring_0) comm_semiring_0
-begin
-
-definition "p * q = fold_coeffs (\<lambda>a p. smult a q + pCons 0 p) p 0"
-
-lemma mult_poly_0_left: "(0::'a poly) * q = 0"
- by (simp add: times_poly_def)
-
-lemma mult_pCons_left [simp]: "pCons a p * q = smult a q + pCons 0 (p * q)"
- by (cases "p = 0 \<and> a = 0") (auto simp add: times_poly_def)
-
-lemma mult_poly_0_right: "p * (0::'a poly) = 0"
- by (induct p) (simp_all add: mult_poly_0_left)
-
-lemma mult_pCons_right [simp]: "p * pCons a q = smult a p + pCons 0 (p * q)"
- by (induct p) (simp_all add: mult_poly_0_left algebra_simps)
-
-lemmas mult_poly_0 = mult_poly_0_left mult_poly_0_right
-
-lemma mult_smult_left [simp]: "smult a p * q = smult a (p * q)"
- by (induct p) (simp_all add: mult_poly_0 smult_add_right)
-
-lemma mult_smult_right [simp]: "p * smult a q = smult a (p * q)"
- by (induct q) (simp_all add: mult_poly_0 smult_add_right)
-
-lemma mult_poly_add_left: "(p + q) * r = p * r + q * r"
- for p q r :: "'a poly"
- by (induct r) (simp_all add: mult_poly_0 smult_distribs algebra_simps)
-
-instance
-proof
- fix p q r :: "'a poly"
- show 0: "0 * p = 0"
- by (rule mult_poly_0_left)
- show "p * 0 = 0"
- by (rule mult_poly_0_right)
- show "(p + q) * r = p * r + q * r"
- by (rule mult_poly_add_left)
- show "(p * q) * r = p * (q * r)"
- by (induct p) (simp_all add: mult_poly_0 mult_poly_add_left)
- show "p * q = q * p"
- by (induct p) (simp_all add: mult_poly_0)
-qed
-
-end
-
-lemma coeff_mult_degree_sum:
- "coeff (p * q) (degree p + degree q) = coeff p (degree p) * coeff q (degree q)"
- by (induct p) (simp_all add: coeff_eq_0)
-
-instance poly :: ("{comm_semiring_0,semiring_no_zero_divisors}") semiring_no_zero_divisors
-proof
- fix p q :: "'a poly"
- assume "p \<noteq> 0" and "q \<noteq> 0"
- have "coeff (p * q) (degree p + degree q) = coeff p (degree p) * coeff q (degree q)"
- by (rule coeff_mult_degree_sum)
- also from \<open>p \<noteq> 0\<close> \<open>q \<noteq> 0\<close> have "coeff p (degree p) * coeff q (degree q) \<noteq> 0"
- by simp
- finally have "\<exists>n. coeff (p * q) n \<noteq> 0" ..
- then show "p * q \<noteq> 0"
- by (simp add: poly_eq_iff)
-qed
-
-instance poly :: (comm_semiring_0_cancel) comm_semiring_0_cancel ..
-
-lemma coeff_mult: "coeff (p * q) n = (\<Sum>i\<le>n. coeff p i * coeff q (n-i))"
-proof (induct p arbitrary: n)
- case 0
- show ?case by simp
-next
- case (pCons a p n)
- then show ?case
- by (cases n) (simp_all add: sum_atMost_Suc_shift del: sum_atMost_Suc)
-qed
-
-lemma degree_mult_le: "degree (p * q) \<le> degree p + degree q"
- apply (rule degree_le)
- apply (induct p)
- apply simp
- apply (simp add: coeff_eq_0 coeff_pCons split: nat.split)
- done
-
-lemma mult_monom: "monom a m * monom b n = monom (a * b) (m + n)"
- by (induct m) (simp add: monom_0 smult_monom, simp add: monom_Suc)
-
-instantiation poly :: (comm_semiring_1) comm_semiring_1
-begin
-
-definition one_poly_def: "1 = pCons 1 0"
-
-instance
-proof
- show "1 * p = p" for p :: "'a poly"
- by (simp add: one_poly_def)
- show "0 \<noteq> (1::'a poly)"
- by (simp add: one_poly_def)
-qed
-
-end
-
-instance poly :: ("{comm_semiring_1,semiring_1_no_zero_divisors}") semiring_1_no_zero_divisors ..
-instance poly :: (comm_ring) comm_ring ..
-instance poly :: (comm_ring_1) comm_ring_1 ..
-instance poly :: (comm_ring_1) comm_semiring_1_cancel ..
-
-lemma coeff_1 [simp]: "coeff 1 n = (if n = 0 then 1 else 0)"
- by (simp add: one_poly_def coeff_pCons split: nat.split)
-
-lemma monom_eq_1 [simp]: "monom 1 0 = 1"
- by (simp add: monom_0 one_poly_def)
-
-lemma monom_eq_1_iff: "monom c n = 1 \<longleftrightarrow> c = 1 \<and> n = 0"
- using monom_eq_const_iff[of c n 1] by (auto simp: one_poly_def)
-
-lemma monom_altdef: "monom c n = smult c ([:0, 1:]^n)"
- by (induct n) (simp_all add: monom_0 monom_Suc one_poly_def)
-
-lemma degree_1 [simp]: "degree 1 = 0"
- unfolding one_poly_def by (rule degree_pCons_0)
-
-lemma coeffs_1_eq [simp, code abstract]: "coeffs 1 = [1]"
- by (simp add: one_poly_def)
-
-lemma degree_power_le: "degree (p ^ n) \<le> degree p * n"
- by (induct n) (auto intro: order_trans degree_mult_le)
-
-lemma coeff_0_power: "coeff (p ^ n) 0 = coeff p 0 ^ n"
- by (induct n) (simp_all add: coeff_mult)
-
-lemma poly_smult [simp]: "poly (smult a p) x = a * poly p x"
- by (induct p) (simp_all add: algebra_simps)
-
-lemma poly_mult [simp]: "poly (p * q) x = poly p x * poly q x"
- by (induct p) (simp_all add: algebra_simps)
-
-lemma poly_1 [simp]: "poly 1 x = 1"
- by (simp add: one_poly_def)
-
-lemma poly_power [simp]: "poly (p ^ n) x = poly p x ^ n"
- for p :: "'a::comm_semiring_1 poly"
- by (induct n) simp_all
-
-lemma poly_prod: "poly (\<Prod>k\<in>A. p k) x = (\<Prod>k\<in>A. poly (p k) x)"
- by (induct A rule: infinite_finite_induct) simp_all
-
-lemma degree_prod_sum_le: "finite S \<Longrightarrow> degree (prod f S) \<le> sum (degree o f) S"
-proof (induct S rule: finite_induct)
- case empty
- then show ?case by simp
-next
- case (insert a S)
- show ?case
- unfolding prod.insert[OF insert(1-2)] sum.insert[OF insert(1-2)]
- by (rule le_trans[OF degree_mult_le]) (use insert in auto)
-qed
-
-lemma coeff_0_prod_list: "coeff (prod_list xs) 0 = prod_list (map (\<lambda>p. coeff p 0) xs)"
- by (induct xs) (simp_all add: coeff_mult)
-
-lemma coeff_monom_mult: "coeff (monom c n * p) k = (if k < n then 0 else c * coeff p (k - n))"
-proof -
- have "coeff (monom c n * p) k = (\<Sum>i\<le>k. (if n = i then c else 0) * coeff p (k - i))"
- by (simp add: coeff_mult)
- also have "\<dots> = (\<Sum>i\<le>k. (if n = i then c * coeff p (k - i) else 0))"
- by (intro sum.cong) simp_all
- also have "\<dots> = (if k < n then 0 else c * coeff p (k - n))"
- by (simp add: sum.delta')
- finally show ?thesis .
-qed
-
-lemma monom_1_dvd_iff': "monom 1 n dvd p \<longleftrightarrow> (\<forall>k<n. coeff p k = 0)"
-proof
- assume "monom 1 n dvd p"
- then obtain r where "p = monom 1 n * r"
- by (rule dvdE)
- then show "\<forall>k<n. coeff p k = 0"
- by (simp add: coeff_mult)
-next
- assume zero: "(\<forall>k<n. coeff p k = 0)"
- define r where "r = Abs_poly (\<lambda>k. coeff p (k + n))"
- have "\<forall>\<^sub>\<infinity>k. coeff p (k + n) = 0"
- by (subst cofinite_eq_sequentially, subst eventually_sequentially_seg,
- subst cofinite_eq_sequentially [symmetric]) transfer
- then have coeff_r [simp]: "coeff r k = coeff p (k + n)" for k
- unfolding r_def by (subst poly.Abs_poly_inverse) simp_all
- have "p = monom 1 n * r"
- by (rule poly_eqI, subst coeff_monom_mult) (simp_all add: zero)
- then show "monom 1 n dvd p" by simp
-qed
-
-
-subsection \<open>Mapping polynomials\<close>
-
-definition map_poly :: "('a :: zero \<Rightarrow> 'b :: zero) \<Rightarrow> 'a poly \<Rightarrow> 'b poly"
- where "map_poly f p = Poly (map f (coeffs p))"
-
-lemma map_poly_0 [simp]: "map_poly f 0 = 0"
- by (simp add: map_poly_def)
-
-lemma map_poly_1: "map_poly f 1 = [:f 1:]"
- by (simp add: map_poly_def)
-
-lemma map_poly_1' [simp]: "f 1 = 1 \<Longrightarrow> map_poly f 1 = 1"
- by (simp add: map_poly_def one_poly_def)
-
-lemma coeff_map_poly:
- assumes "f 0 = 0"
- shows "coeff (map_poly f p) n = f (coeff p n)"
- by (auto simp: assms map_poly_def nth_default_def coeffs_def not_less Suc_le_eq coeff_eq_0
- simp del: upt_Suc)
-
-lemma coeffs_map_poly [code abstract]:
- "coeffs (map_poly f p) = strip_while (op = 0) (map f (coeffs p))"
- by (simp add: map_poly_def)
-
-lemma coeffs_map_poly':
- assumes "\<And>x. x \<noteq> 0 \<Longrightarrow> f x \<noteq> 0"
- shows "coeffs (map_poly f p) = map f (coeffs p)"
- using assms by (simp add: coeffs_map_poly no_trailing_map strip_while_idem_iff)
- (metis comp_def no_leading_def no_trailing_coeffs)
-
-lemma set_coeffs_map_poly:
- "(\<And>x. f x = 0 \<longleftrightarrow> x = 0) \<Longrightarrow> set (coeffs (map_poly f p)) = f ` set (coeffs p)"
- by (simp add: coeffs_map_poly')
-
-lemma degree_map_poly:
- assumes "\<And>x. x \<noteq> 0 \<Longrightarrow> f x \<noteq> 0"
- shows "degree (map_poly f p) = degree p"
- by (simp add: degree_eq_length_coeffs coeffs_map_poly' assms)
-
-lemma map_poly_eq_0_iff:
- assumes "f 0 = 0" "\<And>x. x \<in> set (coeffs p) \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> f x \<noteq> 0"
- shows "map_poly f p = 0 \<longleftrightarrow> p = 0"
-proof -
- have "(coeff (map_poly f p) n = 0) = (coeff p n = 0)" for n
- proof -
- have "coeff (map_poly f p) n = f (coeff p n)"
- by (simp add: coeff_map_poly assms)
- also have "\<dots> = 0 \<longleftrightarrow> coeff p n = 0"
- proof (cases "n < length (coeffs p)")
- case True
- then have "coeff p n \<in> set (coeffs p)"
- by (auto simp: coeffs_def simp del: upt_Suc)
- with assms show "f (coeff p n) = 0 \<longleftrightarrow> coeff p n = 0"
- by auto
- next
- case False
- then show ?thesis
- by (auto simp: assms length_coeffs nth_default_coeffs_eq [symmetric] nth_default_def)
- qed
- finally show ?thesis .
- qed
- then show ?thesis by (auto simp: poly_eq_iff)
-qed
-
-lemma map_poly_smult:
- assumes "f 0 = 0""\<And>c x. f (c * x) = f c * f x"
- shows "map_poly f (smult c p) = smult (f c) (map_poly f p)"
- by (intro poly_eqI) (simp_all add: assms coeff_map_poly)
-
-lemma map_poly_pCons:
- assumes "f 0 = 0"
- shows "map_poly f (pCons c p) = pCons (f c) (map_poly f p)"
- by (intro poly_eqI) (simp_all add: assms coeff_map_poly coeff_pCons split: nat.splits)
-
-lemma map_poly_map_poly:
- assumes "f 0 = 0" "g 0 = 0"
- shows "map_poly f (map_poly g p) = map_poly (f \<circ> g) p"
- by (intro poly_eqI) (simp add: coeff_map_poly assms)
-
-lemma map_poly_id [simp]: "map_poly id p = p"
- by (simp add: map_poly_def)
-
-lemma map_poly_id' [simp]: "map_poly (\<lambda>x. x) p = p"
- by (simp add: map_poly_def)
-
-lemma map_poly_cong:
- assumes "(\<And>x. x \<in> set (coeffs p) \<Longrightarrow> f x = g x)"
- shows "map_poly f p = map_poly g p"
-proof -
- from assms have "map f (coeffs p) = map g (coeffs p)"
- by (intro map_cong) simp_all
- then show ?thesis
- by (simp only: coeffs_eq_iff coeffs_map_poly)
-qed
-
-lemma map_poly_monom: "f 0 = 0 \<Longrightarrow> map_poly f (monom c n) = monom (f c) n"
- by (intro poly_eqI) (simp_all add: coeff_map_poly)
-
-lemma map_poly_idI:
- assumes "\<And>x. x \<in> set (coeffs p) \<Longrightarrow> f x = x"
- shows "map_poly f p = p"
- using map_poly_cong[OF assms, of _ id] by simp
-
-lemma map_poly_idI':
- assumes "\<And>x. x \<in> set (coeffs p) \<Longrightarrow> f x = x"
- shows "p = map_poly f p"
- using map_poly_cong[OF assms, of _ id] by simp
-
-lemma smult_conv_map_poly: "smult c p = map_poly (\<lambda>x. c * x) p"
- by (intro poly_eqI) (simp_all add: coeff_map_poly)
-
-
-subsection \<open>Conversions from @{typ nat} and @{typ int} numbers\<close>
-
-lemma of_nat_poly: "of_nat n = [:of_nat n :: 'a :: comm_semiring_1:]"
-proof (induct n)
- case 0
- then show ?case by simp
-next
- case (Suc n)
- then have "of_nat (Suc n) = 1 + (of_nat n :: 'a poly)"
- by simp
- also have "(of_nat n :: 'a poly) = [: of_nat n :]"
- by (subst Suc) (rule refl)
- also have "1 = [:1:]"
- by (simp add: one_poly_def)
- finally show ?case
- by (subst (asm) add_pCons) simp
-qed
-
-lemma degree_of_nat [simp]: "degree (of_nat n) = 0"
- by (simp add: of_nat_poly)
-
-lemma lead_coeff_of_nat [simp]:
- "lead_coeff (of_nat n) = (of_nat n :: 'a::{comm_semiring_1,semiring_char_0})"
- by (simp add: of_nat_poly)
-
-lemma of_int_poly: "of_int k = [:of_int k :: 'a :: comm_ring_1:]"
- by (simp only: of_int_of_nat of_nat_poly) simp
-
-lemma degree_of_int [simp]: "degree (of_int k) = 0"
- by (simp add: of_int_poly)
-
-lemma lead_coeff_of_int [simp]:
- "lead_coeff (of_int k) = (of_int k :: 'a::{comm_ring_1,ring_char_0})"
- by (simp add: of_int_poly)
-
-lemma numeral_poly: "numeral n = [:numeral n:]"
- by (subst of_nat_numeral [symmetric], subst of_nat_poly) simp
-
-lemma degree_numeral [simp]: "degree (numeral n) = 0"
- by (subst of_nat_numeral [symmetric], subst of_nat_poly) simp
-
-lemma lead_coeff_numeral [simp]:
- "lead_coeff (numeral n) = numeral n"
- by (simp add: numeral_poly)
-
-
-subsection \<open>Lemmas about divisibility\<close>
-
-lemma dvd_smult:
- assumes "p dvd q"
- shows "p dvd smult a q"
-proof -
- from assms obtain k where "q = p * k" ..
- then have "smult a q = p * smult a k" by simp
- then show "p dvd smult a q" ..
-qed
-
-lemma dvd_smult_cancel: "p dvd smult a q \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> p dvd q"
- for a :: "'a::field"
- by (drule dvd_smult [where a="inverse a"]) simp
-
-lemma dvd_smult_iff: "a \<noteq> 0 \<Longrightarrow> p dvd smult a q \<longleftrightarrow> p dvd q"
- for a :: "'a::field"
- by (safe elim!: dvd_smult dvd_smult_cancel)
-
-lemma smult_dvd_cancel:
- assumes "smult a p dvd q"
- shows "p dvd q"
-proof -
- from assms obtain k where "q = smult a p * k" ..
- then have "q = p * smult a k" by simp
- then show "p dvd q" ..
-qed
-
-lemma smult_dvd: "p dvd q \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> smult a p dvd q"
- for a :: "'a::field"
- by (rule smult_dvd_cancel [where a="inverse a"]) simp
-
-lemma smult_dvd_iff: "smult a p dvd q \<longleftrightarrow> (if a = 0 then q = 0 else p dvd q)"
- for a :: "'a::field"
- by (auto elim: smult_dvd smult_dvd_cancel)
-
-lemma is_unit_smult_iff: "smult c p dvd 1 \<longleftrightarrow> c dvd 1 \<and> p dvd 1"
-proof -
- have "smult c p = [:c:] * p" by simp
- also have "\<dots> dvd 1 \<longleftrightarrow> c dvd 1 \<and> p dvd 1"
- proof safe
- assume *: "[:c:] * p dvd 1"
- then show "p dvd 1"
- by (rule dvd_mult_right)
- from * obtain q where q: "1 = [:c:] * p * q"
- by (rule dvdE)
- have "c dvd c * (coeff p 0 * coeff q 0)"
- by simp
- also have "\<dots> = coeff ([:c:] * p * q) 0"
- by (simp add: mult.assoc coeff_mult)
- also note q [symmetric]
- finally have "c dvd coeff 1 0" .
- then show "c dvd 1" by simp
- next
- assume "c dvd 1" "p dvd 1"
- from this(1) obtain d where "1 = c * d"
- by (rule dvdE)
- then have "1 = [:c:] * [:d:]"
- by (simp add: one_poly_def mult_ac)
- then have "[:c:] dvd 1"
- by (rule dvdI)
- from mult_dvd_mono[OF this \<open>p dvd 1\<close>] show "[:c:] * p dvd 1"
- by simp
- qed
- finally show ?thesis .
-qed
-
-
-subsection \<open>Polynomials form an integral domain\<close>
-
-instance poly :: (idom) idom ..
-
-lemma degree_mult_eq: "p \<noteq> 0 \<Longrightarrow> q \<noteq> 0 \<Longrightarrow> degree (p * q) = degree p + degree q"
- for p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly"
- by (rule order_antisym [OF degree_mult_le le_degree]) (simp add: coeff_mult_degree_sum)
-
-lemma degree_mult_eq_0:
- "degree (p * q) = 0 \<longleftrightarrow> p = 0 \<or> q = 0 \<or> (p \<noteq> 0 \<and> q \<noteq> 0 \<and> degree p = 0 \<and> degree q = 0)"
- for p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly"
- by (auto simp: degree_mult_eq)
-
-lemma degree_mult_right_le:
- fixes p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly"
- assumes "q \<noteq> 0"
- shows "degree p \<le> degree (p * q)"
- using assms by (cases "p = 0") (simp_all add: degree_mult_eq)
-
-lemma coeff_degree_mult: "coeff (p * q) (degree (p * q)) = coeff q (degree q) * coeff p (degree p)"
- for p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly"
- by (cases "p = 0 \<or> q = 0") (auto simp: degree_mult_eq coeff_mult_degree_sum mult_ac)
-
-lemma dvd_imp_degree_le: "p dvd q \<Longrightarrow> q \<noteq> 0 \<Longrightarrow> degree p \<le> degree q"
- for p q :: "'a::{comm_semiring_1,semiring_no_zero_divisors} poly"
- by (erule dvdE, hypsubst, subst degree_mult_eq) auto
-
-lemma divides_degree:
- fixes p q :: "'a ::{comm_semiring_1,semiring_no_zero_divisors} poly"
- assumes "p dvd q"
- shows "degree p \<le> degree q \<or> q = 0"
- by (metis dvd_imp_degree_le assms)
-
-lemma const_poly_dvd_iff:
- fixes c :: "'a::{comm_semiring_1,semiring_no_zero_divisors}"
- shows "[:c:] dvd p \<longleftrightarrow> (\<forall>n. c dvd coeff p n)"
-proof (cases "c = 0 \<or> p = 0")
- case True
- then show ?thesis
- by (auto intro!: poly_eqI)
-next
- case False
- show ?thesis
- proof
- assume "[:c:] dvd p"
- then show "\<forall>n. c dvd coeff p n"
- by (auto elim!: dvdE simp: coeffs_def)
- next
- assume *: "\<forall>n. c dvd coeff p n"
- define mydiv where "mydiv x y = (SOME z. x = y * z)" for x y :: 'a
- have mydiv: "x = y * mydiv x y" if "y dvd x" for x y
- using that unfolding mydiv_def dvd_def by (rule someI_ex)
- define q where "q = Poly (map (\<lambda>a. mydiv a c) (coeffs p))"
- from False * have "p = q * [:c:]"
- by (intro poly_eqI)
- (auto simp: q_def nth_default_def not_less length_coeffs_degree coeffs_nth
- intro!: coeff_eq_0 mydiv)
- then show "[:c:] dvd p"
- by (simp only: dvd_triv_right)
- qed
-qed
-
-lemma const_poly_dvd_const_poly_iff [simp]: "[:a:] dvd [:b:] \<longleftrightarrow> a dvd b"
- for a b :: "'a::{comm_semiring_1,semiring_no_zero_divisors}"
- by (subst const_poly_dvd_iff) (auto simp: coeff_pCons split: nat.splits)
-
-lemma lead_coeff_mult: "lead_coeff (p * q) = lead_coeff p * lead_coeff q"
- for p q :: "'a::{comm_semiring_0, semiring_no_zero_divisors} poly"
- by (cases "p = 0 \<or> q = 0") (auto simp: coeff_mult_degree_sum degree_mult_eq)
-
-lemma lead_coeff_smult: "lead_coeff (smult c p) = c * lead_coeff p"
- for p :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly"
-proof -
- have "smult c p = [:c:] * p" by simp
- also have "lead_coeff \<dots> = c * lead_coeff p"
- by (subst lead_coeff_mult) simp_all
- finally show ?thesis .
-qed
-
-lemma lead_coeff_1 [simp]: "lead_coeff 1 = 1"
- by simp
-
-lemma lead_coeff_power: "lead_coeff (p ^ n) = lead_coeff p ^ n"
- for p :: "'a::{comm_semiring_1,semiring_no_zero_divisors} poly"
- by (induct n) (simp_all add: lead_coeff_mult)
-
-
-subsection \<open>Polynomials form an ordered integral domain\<close>
-
-definition pos_poly :: "'a::linordered_semidom poly \<Rightarrow> bool"
- where "pos_poly p \<longleftrightarrow> 0 < coeff p (degree p)"
-
-lemma pos_poly_pCons: "pos_poly (pCons a p) \<longleftrightarrow> pos_poly p \<or> (p = 0 \<and> 0 < a)"
- by (simp add: pos_poly_def)
-
-lemma not_pos_poly_0 [simp]: "\<not> pos_poly 0"
- by (simp add: pos_poly_def)
-
-lemma pos_poly_add: "pos_poly p \<Longrightarrow> pos_poly q \<Longrightarrow> pos_poly (p + q)"
- apply (induct p arbitrary: q)
- apply simp
- apply (case_tac q)
- apply (force simp add: pos_poly_pCons add_pos_pos)
- done
-
-lemma pos_poly_mult: "pos_poly p \<Longrightarrow> pos_poly q \<Longrightarrow> pos_poly (p * q)"
- unfolding pos_poly_def
- apply (subgoal_tac "p \<noteq> 0 \<and> q \<noteq> 0")
- apply (simp add: degree_mult_eq coeff_mult_degree_sum)
- apply auto
- done
-
-lemma pos_poly_total: "p = 0 \<or> pos_poly p \<or> pos_poly (- p)"
- for p :: "'a::linordered_idom poly"
- by (induct p) (auto simp: pos_poly_pCons)
-
-lemma last_coeffs_eq_coeff_degree: "p \<noteq> 0 \<Longrightarrow> last (coeffs p) = coeff p (degree p)"
- by (simp add: coeffs_def)
-
-lemma pos_poly_coeffs [code]: "pos_poly p \<longleftrightarrow> (let as = coeffs p in as \<noteq> [] \<and> last as > 0)"
- (is "?lhs \<longleftrightarrow> ?rhs")
-proof
- assume ?rhs
- then show ?lhs
- by (auto simp add: pos_poly_def last_coeffs_eq_coeff_degree)
-next
- assume ?lhs
- then have *: "0 < coeff p (degree p)"
- by (simp add: pos_poly_def)
- then have "p \<noteq> 0"
- by auto
- with * show ?rhs
- by (simp add: last_coeffs_eq_coeff_degree)
-qed
-
-instantiation poly :: (linordered_idom) linordered_idom
-begin
-
-definition "x < y \<longleftrightarrow> pos_poly (y - x)"
-
-definition "x \<le> y \<longleftrightarrow> x = y \<or> pos_poly (y - x)"
-
-definition "\<bar>x::'a poly\<bar> = (if x < 0 then - x else x)"
-
-definition "sgn (x::'a poly) = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
-
-instance
-proof
- fix x y z :: "'a poly"
- show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
- unfolding less_eq_poly_def less_poly_def
- apply safe
- apply simp
- apply (drule (1) pos_poly_add)
- apply simp
- done
- show "x \<le> x"
- by (simp add: less_eq_poly_def)
- show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z"
- unfolding less_eq_poly_def
- apply safe
- apply (drule (1) pos_poly_add)
- apply (simp add: algebra_simps)
- done
- show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y"
- unfolding less_eq_poly_def
- apply safe
- apply (drule (1) pos_poly_add)
- apply simp
- done
- show "x \<le> y \<Longrightarrow> z + x \<le> z + y"
- unfolding less_eq_poly_def
- apply safe
- apply (simp add: algebra_simps)
- done
- show "x \<le> y \<or> y \<le> x"
- unfolding less_eq_poly_def
- using pos_poly_total [of "x - y"]
- by auto
- show "x < y \<Longrightarrow> 0 < z \<Longrightarrow> z * x < z * y"
- by (simp add: less_poly_def right_diff_distrib [symmetric] pos_poly_mult)
- show "\<bar>x\<bar> = (if x < 0 then - x else x)"
- by (rule abs_poly_def)
- show "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
- by (rule sgn_poly_def)
-qed
-
-end
-
-text \<open>TODO: Simplification rules for comparisons\<close>
-
-
-subsection \<open>Synthetic division and polynomial roots\<close>
-
-subsubsection \<open>Synthetic division\<close>
-
-text \<open>Synthetic division is simply division by the linear polynomial @{term "x - c"}.\<close>
-
-definition synthetic_divmod :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly \<times> 'a"
- where "synthetic_divmod p c = fold_coeffs (\<lambda>a (q, r). (pCons r q, a + c * r)) p (0, 0)"
-
-definition synthetic_div :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly"
- where "synthetic_div p c = fst (synthetic_divmod p c)"
-
-lemma synthetic_divmod_0 [simp]: "synthetic_divmod 0 c = (0, 0)"
- by (simp add: synthetic_divmod_def)
-
-lemma synthetic_divmod_pCons [simp]:
- "synthetic_divmod (pCons a p) c = (\<lambda>(q, r). (pCons r q, a + c * r)) (synthetic_divmod p c)"
- by (cases "p = 0 \<and> a = 0") (auto simp add: synthetic_divmod_def)
-
-lemma synthetic_div_0 [simp]: "synthetic_div 0 c = 0"
- by (simp add: synthetic_div_def)
-
-lemma synthetic_div_unique_lemma: "smult c p = pCons a p \<Longrightarrow> p = 0"
- by (induct p arbitrary: a) simp_all
-
-lemma snd_synthetic_divmod: "snd (synthetic_divmod p c) = poly p c"
- by (induct p) (simp_all add: split_def)
-
-lemma synthetic_div_pCons [simp]:
- "synthetic_div (pCons a p) c = pCons (poly p c) (synthetic_div p c)"
- by (simp add: synthetic_div_def split_def snd_synthetic_divmod)
-
-lemma synthetic_div_eq_0_iff: "synthetic_div p c = 0 \<longleftrightarrow> degree p = 0"
-proof (induct p)
- case 0
- then show ?case by simp
-next
- case (pCons a p)
- then show ?case by (cases p) simp
-qed
-
-lemma degree_synthetic_div: "degree (synthetic_div p c) = degree p - 1"
- by (induct p) (simp_all add: synthetic_div_eq_0_iff)
-
-lemma synthetic_div_correct:
- "p + smult c (synthetic_div p c) = pCons (poly p c) (synthetic_div p c)"
- by (induct p) simp_all
-
-lemma synthetic_div_unique: "p + smult c q = pCons r q \<Longrightarrow> r = poly p c \<and> q = synthetic_div p c"
- apply (induct p arbitrary: q r)
- apply simp
- apply (frule synthetic_div_unique_lemma)
- apply simp
- apply (case_tac q, force)
- done
-
-lemma synthetic_div_correct': "[:-c, 1:] * synthetic_div p c + [:poly p c:] = p"
- for c :: "'a::comm_ring_1"
- using synthetic_div_correct [of p c] by (simp add: algebra_simps)
-
-
-subsubsection \<open>Polynomial roots\<close>
-
-lemma poly_eq_0_iff_dvd: "poly p c = 0 \<longleftrightarrow> [:- c, 1:] dvd p"
- (is "?lhs \<longleftrightarrow> ?rhs")
- for c :: "'a::comm_ring_1"
-proof
- assume ?lhs
- with synthetic_div_correct' [of c p] have "p = [:-c, 1:] * synthetic_div p c" by simp
- then show ?rhs ..
-next
- assume ?rhs
- then obtain k where "p = [:-c, 1:] * k" by (rule dvdE)
- then show ?lhs by simp
-qed
-
-lemma dvd_iff_poly_eq_0: "[:c, 1:] dvd p \<longleftrightarrow> poly p (- c) = 0"
- for c :: "'a::comm_ring_1"
- by (simp add: poly_eq_0_iff_dvd)
-
-lemma poly_roots_finite: "p \<noteq> 0 \<Longrightarrow> finite {x. poly p x = 0}"
- for p :: "'a::{comm_ring_1,ring_no_zero_divisors} poly"
-proof (induct n \<equiv> "degree p" arbitrary: p)
- case 0
- then obtain a where "a \<noteq> 0" and "p = [:a:]"
- by (cases p) (simp split: if_splits)
- then show "finite {x. poly p x = 0}"
- by simp
-next
- case (Suc n)
- show "finite {x. poly p x = 0}"
- proof (cases "\<exists>x. poly p x = 0")
- case False
- then show "finite {x. poly p x = 0}" by simp
- next
- case True
- then obtain a where "poly p a = 0" ..
- then have "[:-a, 1:] dvd p"
- by (simp only: poly_eq_0_iff_dvd)
- then obtain k where k: "p = [:-a, 1:] * k" ..
- with \<open>p \<noteq> 0\<close> have "k \<noteq> 0"
- by auto
- with k have "degree p = Suc (degree k)"
- by (simp add: degree_mult_eq del: mult_pCons_left)
- with \<open>Suc n = degree p\<close> have "n = degree k"
- by simp
- from this \<open>k \<noteq> 0\<close> have "finite {x. poly k x = 0}"
- by (rule Suc.hyps)
- then have "finite (insert a {x. poly k x = 0})"
- by simp
- then show "finite {x. poly p x = 0}"
- by (simp add: k Collect_disj_eq del: mult_pCons_left)
- qed
-qed
-
-lemma poly_eq_poly_eq_iff: "poly p = poly q \<longleftrightarrow> p = q"
- (is "?lhs \<longleftrightarrow> ?rhs")
- for p q :: "'a::{comm_ring_1,ring_no_zero_divisors,ring_char_0} poly"
-proof
- assume ?rhs
- then show ?lhs by simp
-next
- assume ?lhs
- have "poly p = poly 0 \<longleftrightarrow> p = 0" for p :: "'a poly"
- apply (cases "p = 0")
- apply simp_all
- apply (drule poly_roots_finite)
- apply (auto simp add: infinite_UNIV_char_0)
- done
- from \<open>?lhs\<close> and this [of "p - q"] show ?rhs
- by auto
-qed
-
-lemma poly_all_0_iff_0: "(\<forall>x. poly p x = 0) \<longleftrightarrow> p = 0"
- for p :: "'a::{ring_char_0,comm_ring_1,ring_no_zero_divisors} poly"
- by (auto simp add: poly_eq_poly_eq_iff [symmetric])
-
-
-subsubsection \<open>Order of polynomial roots\<close>
-
-definition order :: "'a::idom \<Rightarrow> 'a poly \<Rightarrow> nat"
- where "order a p = (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)"
-
-lemma coeff_linear_power: "coeff ([:a, 1:] ^ n) n = 1"
- for a :: "'a::comm_semiring_1"
- apply (induct n)
- apply simp_all
- apply (subst coeff_eq_0)
- apply (auto intro: le_less_trans degree_power_le)
- done
-
-lemma degree_linear_power: "degree ([:a, 1:] ^ n) = n"
- for a :: "'a::comm_semiring_1"
- apply (rule order_antisym)
- apply (rule ord_le_eq_trans [OF degree_power_le])
- apply simp
- apply (rule le_degree)
- apply (simp add: coeff_linear_power)
- done
-
-lemma order_1: "[:-a, 1:] ^ order a p dvd p"
- apply (cases "p = 0")
- apply simp
- apply (cases "order a p")
- apply simp
- apply (subgoal_tac "nat < (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)")
- apply (drule not_less_Least)
- apply simp
- apply (fold order_def)
- apply simp
- done
-
-lemma order_2: "p \<noteq> 0 \<Longrightarrow> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
- unfolding order_def
- apply (rule LeastI_ex)
- apply (rule_tac x="degree p" in exI)
- apply (rule notI)
- apply (drule (1) dvd_imp_degree_le)
- apply (simp only: degree_linear_power)
- done
-
-lemma order: "p \<noteq> 0 \<Longrightarrow> [:-a, 1:] ^ order a p dvd p \<and> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
- by (rule conjI [OF order_1 order_2])
-
-lemma order_degree:
- assumes p: "p \<noteq> 0"
- shows "order a p \<le> degree p"
-proof -
- have "order a p = degree ([:-a, 1:] ^ order a p)"
- by (simp only: degree_linear_power)
- also from order_1 p have "\<dots> \<le> degree p"
- by (rule dvd_imp_degree_le)
- finally show ?thesis .
-qed
-
-lemma order_root: "poly p a = 0 \<longleftrightarrow> p = 0 \<or> order a p \<noteq> 0"
- apply (cases "p = 0")
- apply simp_all
- apply (rule iffI)
- apply (metis order_2 not_gr0 poly_eq_0_iff_dvd power_0 power_Suc_0 power_one_right)
- unfolding poly_eq_0_iff_dvd
- apply (metis dvd_power dvd_trans order_1)
- done
-
-lemma order_0I: "poly p a \<noteq> 0 \<Longrightarrow> order a p = 0"
- by (subst (asm) order_root) auto
-
-lemma order_unique_lemma:
- fixes p :: "'a::idom poly"
- assumes "[:-a, 1:] ^ n dvd p" "\<not> [:-a, 1:] ^ Suc n dvd p"
- shows "n = order a p"
- unfolding Polynomial.order_def
- apply (rule Least_equality [symmetric])
- apply (fact assms)
- apply (rule classical)
- apply (erule notE)
- unfolding not_less_eq_eq
- using assms(1)
- apply (rule power_le_dvd)
- apply assumption
- done
-
-lemma order_mult: "p * q \<noteq> 0 \<Longrightarrow> order a (p * q) = order a p + order a q"
-proof -
- define i where "i = order a p"
- define j where "j = order a q"
- define t where "t = [:-a, 1:]"
- have t_dvd_iff: "\<And>u. t dvd u \<longleftrightarrow> poly u a = 0"
- by (simp add: t_def dvd_iff_poly_eq_0)
- assume "p * q \<noteq> 0"
- then show "order a (p * q) = i + j"
- apply clarsimp
- apply (drule order [where a=a and p=p, folded i_def t_def])
- apply (drule order [where a=a and p=q, folded j_def t_def])
- apply clarify
- apply (erule dvdE)+
- apply (rule order_unique_lemma [symmetric], fold t_def)
- apply (simp_all add: power_add t_dvd_iff)
- done
-qed
-
-lemma order_smult:
- assumes "c \<noteq> 0"
- shows "order x (smult c p) = order x p"
-proof (cases "p = 0")
- case True
- then show ?thesis
- by simp
-next
- case False
- have "smult c p = [:c:] * p" by simp
- also from assms False have "order x \<dots> = order x [:c:] + order x p"
- by (subst order_mult) simp_all
- also have "order x [:c:] = 0"
- by (rule order_0I) (use assms in auto)
- finally show ?thesis
- by simp
-qed
-
-(* Next two lemmas contributed by Wenda Li *)
-lemma order_1_eq_0 [simp]:"order x 1 = 0"
- by (metis order_root poly_1 zero_neq_one)
-
-lemma order_power_n_n: "order a ([:-a,1:]^n)=n"
-proof (induct n) (*might be proved more concisely using nat_less_induct*)
- case 0
- then show ?case
- by (metis order_root poly_1 power_0 zero_neq_one)
-next
- case (Suc n)
- have "order a ([:- a, 1:] ^ Suc n) = order a ([:- a, 1:] ^ n) + order a [:-a,1:]"
- by (metis (no_types, hide_lams) One_nat_def add_Suc_right monoid_add_class.add.right_neutral
- one_neq_zero order_mult pCons_eq_0_iff power_add power_eq_0_iff power_one_right)
- moreover have "order a [:-a,1:] = 1"
- unfolding order_def
- proof (rule Least_equality, rule notI)
- assume "[:- a, 1:] ^ Suc 1 dvd [:- a, 1:]"
- then have "degree ([:- a, 1:] ^ Suc 1) \<le> degree ([:- a, 1:])"
- by (rule dvd_imp_degree_le) auto
- then show False
- by auto
- next
- fix y
- assume *: "\<not> [:- a, 1:] ^ Suc y dvd [:- a, 1:]"
- show "1 \<le> y"
- proof (rule ccontr)
- assume "\<not> 1 \<le> y"
- then have "y = 0" by auto
- then have "[:- a, 1:] ^ Suc y dvd [:- a, 1:]" by auto
- with * show False by auto
- qed
- qed
- ultimately show ?case
- using Suc by auto
-qed
-
-lemma order_0_monom [simp]: "c \<noteq> 0 \<Longrightarrow> order 0 (monom c n) = n"
- using order_power_n_n[of 0 n] by (simp add: monom_altdef order_smult)
-
-lemma dvd_imp_order_le: "q \<noteq> 0 \<Longrightarrow> p dvd q \<Longrightarrow> Polynomial.order a p \<le> Polynomial.order a q"
- by (auto simp: order_mult elim: dvdE)
-
-text \<open>Now justify the standard squarefree decomposition, i.e. \<open>f / gcd f f'\<close>.\<close>
-
-lemma order_divides: "[:-a, 1:] ^ n dvd p \<longleftrightarrow> p = 0 \<or> n \<le> order a p"
- apply (cases "p = 0")
- apply auto
- apply (drule order_2 [where a=a and p=p])
- apply (metis not_less_eq_eq power_le_dvd)
- apply (erule power_le_dvd [OF order_1])
- done
-
-lemma order_decomp:
- assumes "p \<noteq> 0"
- shows "\<exists>q. p = [:- a, 1:] ^ order a p * q \<and> \<not> [:- a, 1:] dvd q"
-proof -
- from assms have *: "[:- a, 1:] ^ order a p dvd p"
- and **: "\<not> [:- a, 1:] ^ Suc (order a p) dvd p"
- by (auto dest: order)
- from * obtain q where q: "p = [:- a, 1:] ^ order a p * q" ..
- with ** have "\<not> [:- a, 1:] ^ Suc (order a p) dvd [:- a, 1:] ^ order a p * q"
- by simp
- then have "\<not> [:- a, 1:] ^ order a p * [:- a, 1:] dvd [:- a, 1:] ^ order a p * q"
- by simp
- with idom_class.dvd_mult_cancel_left [of "[:- a, 1:] ^ order a p" "[:- a, 1:]" q]
- have "\<not> [:- a, 1:] dvd q" by auto
- with q show ?thesis by blast
-qed
-
-lemma monom_1_dvd_iff: "p \<noteq> 0 \<Longrightarrow> monom 1 n dvd p \<longleftrightarrow> n \<le> order 0 p"
- using order_divides[of 0 n p] by (simp add: monom_altdef)
-
-
-subsection \<open>Additional induction rules on polynomials\<close>
-
-text \<open>
- An induction rule for induction over the roots of a polynomial with a certain property.
- (e.g. all positive roots)
-\<close>
-lemma poly_root_induct [case_names 0 no_roots root]:
- fixes p :: "'a :: idom poly"
- assumes "Q 0"
- and "\<And>p. (\<And>a. P a \<Longrightarrow> poly p a \<noteq> 0) \<Longrightarrow> Q p"
- and "\<And>a p. P a \<Longrightarrow> Q p \<Longrightarrow> Q ([:a, -1:] * p)"
- shows "Q p"
-proof (induction "degree p" arbitrary: p rule: less_induct)
- case (less p)
- show ?case
- proof (cases "p = 0")
- case True
- with assms(1) show ?thesis by simp
- next
- case False
- show ?thesis
- proof (cases "\<exists>a. P a \<and> poly p a = 0")
- case False
- then show ?thesis by (intro assms(2)) blast
- next
- case True
- then obtain a where a: "P a" "poly p a = 0"
- by blast
- then have "-[:-a, 1:] dvd p"
- by (subst minus_dvd_iff) (simp add: poly_eq_0_iff_dvd)
- then obtain q where q: "p = [:a, -1:] * q" by (elim dvdE) simp
- with False have "q \<noteq> 0" by auto
- have "degree p = Suc (degree q)"
- by (subst q, subst degree_mult_eq) (simp_all add: \<open>q \<noteq> 0\<close>)
- then have "Q q" by (intro less) simp
- with a(1) have "Q ([:a, -1:] * q)"
- by (rule assms(3))
- with q show ?thesis by simp
- qed
- qed
-qed
-
-lemma dropWhile_replicate_append:
- "dropWhile (op = a) (replicate n a @ ys) = dropWhile (op = a) ys"
- by (induct n) simp_all
-
-lemma Poly_append_replicate_0: "Poly (xs @ replicate n 0) = Poly xs"
- by (subst coeffs_eq_iff) (simp_all add: strip_while_def dropWhile_replicate_append)
-
-text \<open>
- An induction rule for simultaneous induction over two polynomials,
- prepending one coefficient in each step.
-\<close>
-lemma poly_induct2 [case_names 0 pCons]:
- assumes "P 0 0" "\<And>a p b q. P p q \<Longrightarrow> P (pCons a p) (pCons b q)"
- shows "P p q"
-proof -
- define n where "n = max (length (coeffs p)) (length (coeffs q))"
- define xs where "xs = coeffs p @ (replicate (n - length (coeffs p)) 0)"
- define ys where "ys = coeffs q @ (replicate (n - length (coeffs q)) 0)"
- have "length xs = length ys"
- by (simp add: xs_def ys_def n_def)
- then have "P (Poly xs) (Poly ys)"
- by (induct rule: list_induct2) (simp_all add: assms)
- also have "Poly xs = p"
- by (simp add: xs_def Poly_append_replicate_0)
- also have "Poly ys = q"
- by (simp add: ys_def Poly_append_replicate_0)
- finally show ?thesis .
-qed
-
-
-subsection \<open>Composition of polynomials\<close>
-
-(* Several lemmas contributed by René Thiemann and Akihisa Yamada *)
-
-definition pcompose :: "'a::comm_semiring_0 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
- where "pcompose p q = fold_coeffs (\<lambda>a c. [:a:] + q * c) p 0"
-
-notation pcompose (infixl "\<circ>\<^sub>p" 71)
-
-lemma pcompose_0 [simp]: "pcompose 0 q = 0"
- by (simp add: pcompose_def)
-
-lemma pcompose_pCons: "pcompose (pCons a p) q = [:a:] + q * pcompose p q"
- by (cases "p = 0 \<and> a = 0") (auto simp add: pcompose_def)
-
-lemma pcompose_1: "pcompose 1 p = 1"
- for p :: "'a::comm_semiring_1 poly"
- by (auto simp: one_poly_def pcompose_pCons)
-
-lemma poly_pcompose: "poly (pcompose p q) x = poly p (poly q x)"
- by (induct p) (simp_all add: pcompose_pCons)
-
-lemma degree_pcompose_le: "degree (pcompose p q) \<le> degree p * degree q"
- apply (induct p)
- apply simp
- apply (simp add: pcompose_pCons)
- apply clarify
- apply (rule degree_add_le)
- apply simp
- apply (rule order_trans [OF degree_mult_le])
- apply simp
- done
-
-lemma pcompose_add: "pcompose (p + q) r = pcompose p r + pcompose q r"
- for p q r :: "'a::{comm_semiring_0, ab_semigroup_add} poly"
-proof (induction p q rule: poly_induct2)
- case 0
- then show ?case by simp
-next
- case (pCons a p b q)
- have "pcompose (pCons a p + pCons b q) r = [:a + b:] + r * pcompose p r + r * pcompose q r"
- by (simp_all add: pcompose_pCons pCons.IH algebra_simps)
- also have "[:a + b:] = [:a:] + [:b:]" by simp
- also have "\<dots> + r * pcompose p r + r * pcompose q r =
- pcompose (pCons a p) r + pcompose (pCons b q) r"
- by (simp only: pcompose_pCons add_ac)
- finally show ?case .
-qed
-
-lemma pcompose_uminus: "pcompose (-p) r = -pcompose p r"
- for p r :: "'a::comm_ring poly"
- by (induct p) (simp_all add: pcompose_pCons)
-
-lemma pcompose_diff: "pcompose (p - q) r = pcompose p r - pcompose q r"
- for p q r :: "'a::comm_ring poly"
- using pcompose_add[of p "-q"] by (simp add: pcompose_uminus)
-
-lemma pcompose_smult: "pcompose (smult a p) r = smult a (pcompose p r)"
- for p r :: "'a::comm_semiring_0 poly"
- by (induct p) (simp_all add: pcompose_pCons pcompose_add smult_add_right)
-
-lemma pcompose_mult: "pcompose (p * q) r = pcompose p r * pcompose q r"
- for p q r :: "'a::comm_semiring_0 poly"
- by (induct p arbitrary: q) (simp_all add: pcompose_add pcompose_smult pcompose_pCons algebra_simps)
-
-lemma pcompose_assoc: "pcompose p (pcompose q r) = pcompose (pcompose p q) r"
- for p q r :: "'a::comm_semiring_0 poly"
- by (induct p arbitrary: q) (simp_all add: pcompose_pCons pcompose_add pcompose_mult)
-
-lemma pcompose_idR[simp]: "pcompose p [: 0, 1 :] = p"
- for p :: "'a::comm_semiring_1 poly"
- by (induct p) (simp_all add: pcompose_pCons)
-
-lemma pcompose_sum: "pcompose (sum f A) p = sum (\<lambda>i. pcompose (f i) p) A"
- by (induct A rule: infinite_finite_induct) (simp_all add: pcompose_1 pcompose_add)
-
-lemma pcompose_prod: "pcompose (prod f A) p = prod (\<lambda>i. pcompose (f i) p) A"
- by (induct A rule: infinite_finite_induct) (simp_all add: pcompose_1 pcompose_mult)
-
-lemma pcompose_const [simp]: "pcompose [:a:] q = [:a:]"
- by (subst pcompose_pCons) simp
-
-lemma pcompose_0': "pcompose p 0 = [:coeff p 0:]"
- by (induct p) (auto simp add: pcompose_pCons)
-
-lemma degree_pcompose: "degree (pcompose p q) = degree p * degree q"
- for p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly"
-proof (induct p)
- case 0
- then show ?case by auto
-next
- case (pCons a p)
- consider "degree (q * pcompose p q) = 0" | "degree (q * pcompose p q) > 0"
- by blast
- then show ?case
- proof cases
- case prems: 1
- show ?thesis
- proof (cases "p = 0")
- case True
- then show ?thesis by auto
- next
- case False
- from prems have "degree q = 0 \<or> pcompose p q = 0"
- by (auto simp add: degree_mult_eq_0)
- moreover have False if "pcompose p q = 0" "degree q \<noteq> 0"
- proof -
- from pCons.hyps(2) that have "degree p = 0"
- by auto
- then obtain a1 where "p = [:a1:]"
- by (metis degree_pCons_eq_if old.nat.distinct(2) pCons_cases)
- with \<open>pcompose p q = 0\<close> \<open>p \<noteq> 0\<close> show False
- by auto
- qed
- ultimately have "degree (pCons a p) * degree q = 0"
- by auto
- moreover have "degree (pcompose (pCons a p) q) = 0"
- proof -
- from prems have "0 = max (degree [:a:]) (degree (q * pcompose p q))"
- by simp
- also have "\<dots> \<ge> degree ([:a:] + q * pcompose p q)"
- by (rule degree_add_le_max)
- finally show ?thesis
- by (auto simp add: pcompose_pCons)
- qed
- ultimately show ?thesis by simp
- qed
- next
- case prems: 2
- then have "p \<noteq> 0" "q \<noteq> 0" "pcompose p q \<noteq> 0"
- by auto
- from prems degree_add_eq_right [of "[:a:]"]
- have "degree (pcompose (pCons a p) q) = degree (q * pcompose p q)"
- by (auto simp: pcompose_pCons)
- with pCons.hyps(2) degree_mult_eq[OF \<open>q\<noteq>0\<close> \<open>pcompose p q\<noteq>0\<close>] show ?thesis
- by auto
- qed
-qed
-
-lemma pcompose_eq_0:
- fixes p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly"
- assumes "pcompose p q = 0" "degree q > 0"
- shows "p = 0"
-proof -
- from assms degree_pcompose [of p q] have "degree p = 0"
- by auto
- then obtain a where "p = [:a:]"
- by (metis degree_pCons_eq_if gr0_conv_Suc neq0_conv pCons_cases)
- with assms(1) have "a = 0"
- by auto
- with \<open>p = [:a:]\<close> show ?thesis
- by simp
-qed
-
-lemma lead_coeff_comp:
- fixes p q :: "'a::{comm_semiring_1,semiring_no_zero_divisors} poly"
- assumes "degree q > 0"
- shows "lead_coeff (pcompose p q) = lead_coeff p * lead_coeff q ^ (degree p)"
-proof (induct p)
- case 0
- then show ?case by auto
-next
- case (pCons a p)
- consider "degree (q * pcompose p q) = 0" | "degree (q * pcompose p q) > 0"
- by blast
- then show ?case
- proof cases
- case prems: 1
- then have "pcompose p q = 0"
- by (metis assms degree_0 degree_mult_eq_0 neq0_conv)
- with pcompose_eq_0[OF _ \<open>degree q > 0\<close>] have "p = 0"
- by simp
- then show ?thesis
- by auto
- next
- case prems: 2
- then have "degree [:a:] < degree (q * pcompose p q)"
- by simp
- then have "lead_coeff ([:a:] + q * p \<circ>\<^sub>p q) = lead_coeff (q * p \<circ>\<^sub>p q)"
- by (rule lead_coeff_add_le)
- then have "lead_coeff (pcompose (pCons a p) q) = lead_coeff (q * pcompose p q)"
- by (simp add: pcompose_pCons)
- also have "\<dots> = lead_coeff q * (lead_coeff p * lead_coeff q ^ degree p)"
- using pCons.hyps(2) lead_coeff_mult[of q "pcompose p q"] by simp
- also have "\<dots> = lead_coeff p * lead_coeff q ^ (degree p + 1)"
- by (auto simp: mult_ac)
- finally show ?thesis by auto
- qed
-qed
-
-
-subsection \<open>Shifting polynomials\<close>
-
-definition poly_shift :: "nat \<Rightarrow> 'a::zero poly \<Rightarrow> 'a poly"
- where "poly_shift n p = Abs_poly (\<lambda>i. coeff p (i + n))"
-
-lemma nth_default_drop: "nth_default x (drop n xs) m = nth_default x xs (m + n)"
- by (auto simp add: nth_default_def add_ac)
-
-lemma nth_default_take: "nth_default x (take n xs) m = (if m < n then nth_default x xs m else x)"
- by (auto simp add: nth_default_def add_ac)
-
-lemma coeff_poly_shift: "coeff (poly_shift n p) i = coeff p (i + n)"
-proof -
- from MOST_coeff_eq_0[of p] obtain m where "\<forall>k>m. coeff p k = 0"
- by (auto simp: MOST_nat)
- then have "\<forall>k>m. coeff p (k + n) = 0"
- by auto
- then have "\<forall>\<^sub>\<infinity>k. coeff p (k + n) = 0"
- by (auto simp: MOST_nat)
- then show ?thesis
- by (simp add: poly_shift_def poly.Abs_poly_inverse)
-qed
-
-lemma poly_shift_id [simp]: "poly_shift 0 = (\<lambda>x. x)"
- by (simp add: poly_eq_iff fun_eq_iff coeff_poly_shift)
-
-lemma poly_shift_0 [simp]: "poly_shift n 0 = 0"
- by (simp add: poly_eq_iff coeff_poly_shift)
-
-lemma poly_shift_1: "poly_shift n 1 = (if n = 0 then 1 else 0)"
- by (simp add: poly_eq_iff coeff_poly_shift)
-
-lemma poly_shift_monom: "poly_shift n (monom c m) = (if m \<ge> n then monom c (m - n) else 0)"
- by (auto simp add: poly_eq_iff coeff_poly_shift)
-
-lemma coeffs_shift_poly [code abstract]:
- "coeffs (poly_shift n p) = drop n (coeffs p)"
-proof (cases "p = 0")
- case True
- then show ?thesis by simp
-next
- case False
- then show ?thesis
- by (intro coeffs_eqI)
- (simp_all add: coeff_poly_shift nth_default_drop nth_default_coeffs_eq)
-qed
-
-
-subsection \<open>Truncating polynomials\<close>
-
-definition poly_cutoff
- where "poly_cutoff n p = Abs_poly (\<lambda>k. if k < n then coeff p k else 0)"
-
-lemma coeff_poly_cutoff: "coeff (poly_cutoff n p) k = (if k < n then coeff p k else 0)"
- unfolding poly_cutoff_def
- by (subst poly.Abs_poly_inverse) (auto simp: MOST_nat intro: exI[of _ n])
-
-lemma poly_cutoff_0 [simp]: "poly_cutoff n 0 = 0"
- by (simp add: poly_eq_iff coeff_poly_cutoff)
-
-lemma poly_cutoff_1 [simp]: "poly_cutoff n 1 = (if n = 0 then 0 else 1)"
- by (simp add: poly_eq_iff coeff_poly_cutoff)
-
-lemma coeffs_poly_cutoff [code abstract]:
- "coeffs (poly_cutoff n p) = strip_while (op = 0) (take n (coeffs p))"
-proof (cases "strip_while (op = 0) (take n (coeffs p)) = []")
- case True
- then have "coeff (poly_cutoff n p) k = 0" for k
- unfolding coeff_poly_cutoff
- by (auto simp: nth_default_coeffs_eq [symmetric] nth_default_def set_conv_nth)
- then have "poly_cutoff n p = 0"
- by (simp add: poly_eq_iff)
- then show ?thesis
- by (subst True) simp_all
-next
- case False
- have "no_trailing (op = 0) (strip_while (op = 0) (take n (coeffs p)))"
- by simp
- with False have "last (strip_while (op = 0) (take n (coeffs p))) \<noteq> 0"
- unfolding no_trailing_unfold by auto
- then show ?thesis
- by (intro coeffs_eqI)
- (simp_all add: coeff_poly_cutoff nth_default_take nth_default_coeffs_eq)
-qed
-
-
-subsection \<open>Reflecting polynomials\<close>
-
-definition reflect_poly :: "'a::zero poly \<Rightarrow> 'a poly"
- where "reflect_poly p = Poly (rev (coeffs p))"
-
-lemma coeffs_reflect_poly [code abstract]:
- "coeffs (reflect_poly p) = rev (dropWhile (op = 0) (coeffs p))"
- by (simp add: reflect_poly_def)
-
-lemma reflect_poly_0 [simp]: "reflect_poly 0 = 0"
- by (simp add: reflect_poly_def)
-
-lemma reflect_poly_1 [simp]: "reflect_poly 1 = 1"
- by (simp add: reflect_poly_def one_poly_def)
-
-lemma coeff_reflect_poly:
- "coeff (reflect_poly p) n = (if n > degree p then 0 else coeff p (degree p - n))"
- by (cases "p = 0")
- (auto simp add: reflect_poly_def nth_default_def
- rev_nth degree_eq_length_coeffs coeffs_nth not_less
- dest: le_imp_less_Suc)
-
-lemma coeff_0_reflect_poly_0_iff [simp]: "coeff (reflect_poly p) 0 = 0 \<longleftrightarrow> p = 0"
- by (simp add: coeff_reflect_poly)
-
-lemma reflect_poly_at_0_eq_0_iff [simp]: "poly (reflect_poly p) 0 = 0 \<longleftrightarrow> p = 0"
- by (simp add: coeff_reflect_poly poly_0_coeff_0)
-
-lemma reflect_poly_pCons':
- "p \<noteq> 0 \<Longrightarrow> reflect_poly (pCons c p) = reflect_poly p + monom c (Suc (degree p))"
- by (intro poly_eqI)
- (auto simp: coeff_reflect_poly coeff_pCons not_less Suc_diff_le split: nat.split)
-
-lemma reflect_poly_const [simp]: "reflect_poly [:a:] = [:a:]"
- by (cases "a = 0") (simp_all add: reflect_poly_def)
-
-lemma poly_reflect_poly_nz:
- "x \<noteq> 0 \<Longrightarrow> poly (reflect_poly p) x = x ^ degree p * poly p (inverse x)"
- for x :: "'a::field"
- by (induct rule: pCons_induct) (simp_all add: field_simps reflect_poly_pCons' poly_monom)
-
-lemma coeff_0_reflect_poly [simp]: "coeff (reflect_poly p) 0 = lead_coeff p"
- by (simp add: coeff_reflect_poly)
-
-lemma poly_reflect_poly_0 [simp]: "poly (reflect_poly p) 0 = lead_coeff p"
- by (simp add: poly_0_coeff_0)
-
-lemma reflect_poly_reflect_poly [simp]: "coeff p 0 \<noteq> 0 \<Longrightarrow> reflect_poly (reflect_poly p) = p"
- by (cases p rule: pCons_cases) (simp add: reflect_poly_def )
-
-lemma degree_reflect_poly_le: "degree (reflect_poly p) \<le> degree p"
- by (simp add: degree_eq_length_coeffs coeffs_reflect_poly length_dropWhile_le diff_le_mono)
-
-lemma reflect_poly_pCons: "a \<noteq> 0 \<Longrightarrow> reflect_poly (pCons a p) = Poly (rev (a # coeffs p))"
- by (subst coeffs_eq_iff) (simp add: coeffs_reflect_poly)
-
-lemma degree_reflect_poly_eq [simp]: "coeff p 0 \<noteq> 0 \<Longrightarrow> degree (reflect_poly p) = degree p"
- by (cases p rule: pCons_cases) (simp add: reflect_poly_pCons degree_eq_length_coeffs)
-
-(* TODO: does this work with zero divisors as well? Probably not. *)
-lemma reflect_poly_mult: "reflect_poly (p * q) = reflect_poly p * reflect_poly q"
- for p q :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly"
-proof (cases "p = 0 \<or> q = 0")
- case False
- then have [simp]: "p \<noteq> 0" "q \<noteq> 0" by auto
- show ?thesis
- proof (rule poly_eqI)
- show "coeff (reflect_poly (p * q)) i = coeff (reflect_poly p * reflect_poly q) i" for i
- proof (cases "i \<le> degree (p * q)")
- case True
- define A where "A = {..i} \<inter> {i - degree q..degree p}"
- define B where "B = {..degree p} \<inter> {degree p - i..degree (p*q) - i}"
- let ?f = "\<lambda>j. degree p - j"
-
- from True have "coeff (reflect_poly (p * q)) i = coeff (p * q) (degree (p * q) - i)"
- by (simp add: coeff_reflect_poly)
- also have "\<dots> = (\<Sum>j\<le>degree (p * q) - i. coeff p j * coeff q (degree (p * q) - i - j))"
- by (simp add: coeff_mult)
- also have "\<dots> = (\<Sum>j\<in>B. coeff p j * coeff q (degree (p * q) - i - j))"
- by (intro sum.mono_neutral_right) (auto simp: B_def degree_mult_eq not_le coeff_eq_0)
- also from True have "\<dots> = (\<Sum>j\<in>A. coeff p (degree p - j) * coeff q (degree q - (i - j)))"
- by (intro sum.reindex_bij_witness[of _ ?f ?f])
- (auto simp: A_def B_def degree_mult_eq add_ac)
- also have "\<dots> =
- (\<Sum>j\<le>i.
- if j \<in> {i - degree q..degree p}
- then coeff p (degree p - j) * coeff q (degree q - (i - j))
- else 0)"
- by (subst sum.inter_restrict [symmetric]) (simp_all add: A_def)
- also have "\<dots> = coeff (reflect_poly p * reflect_poly q) i"
- by (fastforce simp: coeff_mult coeff_reflect_poly intro!: sum.cong)
- finally show ?thesis .
- qed (auto simp: coeff_mult coeff_reflect_poly coeff_eq_0 degree_mult_eq intro!: sum.neutral)
- qed
-qed auto
-
-lemma reflect_poly_smult: "reflect_poly (smult c p) = smult c (reflect_poly p)"
- for p :: "'a::{comm_semiring_0,semiring_no_zero_divisors} poly"
- using reflect_poly_mult[of "[:c:]" p] by simp
-
-lemma reflect_poly_power: "reflect_poly (p ^ n) = reflect_poly p ^ n"
- for p :: "'a::{comm_semiring_1,semiring_no_zero_divisors} poly"
- by (induct n) (simp_all add: reflect_poly_mult)
-
-lemma reflect_poly_prod: "reflect_poly (prod f A) = prod (\<lambda>x. reflect_poly (f x)) A"
- for f :: "_ \<Rightarrow> _::{comm_semiring_0,semiring_no_zero_divisors} poly"
- by (induct A rule: infinite_finite_induct) (simp_all add: reflect_poly_mult)
-
-lemma reflect_poly_prod_list: "reflect_poly (prod_list xs) = prod_list (map reflect_poly xs)"
- for xs :: "_::{comm_semiring_0,semiring_no_zero_divisors} poly list"
- by (induct xs) (simp_all add: reflect_poly_mult)
-
-lemma reflect_poly_Poly_nz:
- "no_trailing (HOL.eq 0) xs \<Longrightarrow> reflect_poly (Poly xs) = Poly (rev xs)"
- by (simp add: reflect_poly_def)
-
-lemmas reflect_poly_simps =
- reflect_poly_0 reflect_poly_1 reflect_poly_const reflect_poly_smult reflect_poly_mult
- reflect_poly_power reflect_poly_prod reflect_poly_prod_list
-
-
-subsection \<open>Derivatives\<close>
-
-function pderiv :: "('a :: {comm_semiring_1,semiring_no_zero_divisors}) poly \<Rightarrow> 'a poly"
- where "pderiv (pCons a p) = (if p = 0 then 0 else p + pCons 0 (pderiv p))"
- by (auto intro: pCons_cases)
-
-termination pderiv
- by (relation "measure degree") simp_all
-
-declare pderiv.simps[simp del]
-
-lemma pderiv_0 [simp]: "pderiv 0 = 0"
- using pderiv.simps [of 0 0] by simp
-
-lemma pderiv_pCons: "pderiv (pCons a p) = p + pCons 0 (pderiv p)"
- by (simp add: pderiv.simps)
-
-lemma pderiv_1 [simp]: "pderiv 1 = 0"
- by (simp add: one_poly_def pderiv_pCons)
-
-lemma pderiv_of_nat [simp]: "pderiv (of_nat n) = 0"
- and pderiv_numeral [simp]: "pderiv (numeral m) = 0"
- by (simp_all add: of_nat_poly numeral_poly pderiv_pCons)
-
-lemma coeff_pderiv: "coeff (pderiv p) n = of_nat (Suc n) * coeff p (Suc n)"
- by (induct p arbitrary: n)
- (auto simp add: pderiv_pCons coeff_pCons algebra_simps split: nat.split)
-
-fun pderiv_coeffs_code :: "'a::{comm_semiring_1,semiring_no_zero_divisors} \<Rightarrow> 'a list \<Rightarrow> 'a list"
- where
- "pderiv_coeffs_code f (x # xs) = cCons (f * x) (pderiv_coeffs_code (f+1) xs)"
- | "pderiv_coeffs_code f [] = []"
-
-definition pderiv_coeffs :: "'a::{comm_semiring_1,semiring_no_zero_divisors} list \<Rightarrow> 'a list"
- where "pderiv_coeffs xs = pderiv_coeffs_code 1 (tl xs)"
-
-(* Efficient code for pderiv contributed by René Thiemann and Akihisa Yamada *)
-lemma pderiv_coeffs_code:
- "nth_default 0 (pderiv_coeffs_code f xs) n = (f + of_nat n) * nth_default 0 xs n"
-proof (induct xs arbitrary: f n)
- case Nil
- then show ?case by simp
-next
- case (Cons x xs)
- show ?case
- proof (cases n)
- case 0
- then show ?thesis
- by (cases "pderiv_coeffs_code (f + 1) xs = [] \<and> f * x = 0") (auto simp: cCons_def)
- next
- case n: (Suc m)
- show ?thesis
- proof (cases "pderiv_coeffs_code (f + 1) xs = [] \<and> f * x = 0")
- case False
- then have "nth_default 0 (pderiv_coeffs_code f (x # xs)) n =
- nth_default 0 (pderiv_coeffs_code (f + 1) xs) m"
- by (auto simp: cCons_def n)
- also have "\<dots> = (f + of_nat n) * nth_default 0 xs m"
- by (simp add: Cons n add_ac)
- finally show ?thesis
- by (simp add: n)
- next
- case True
- have empty: "pderiv_coeffs_code g xs = [] \<Longrightarrow> g + of_nat m = 0 \<or> nth_default 0 xs m = 0" for g
- proof (induct xs arbitrary: g m)
- case Nil
- then show ?case by simp
- next
- case (Cons x xs)
- from Cons(2) have empty: "pderiv_coeffs_code (g + 1) xs = []" and g: "g = 0 \<or> x = 0"
- by (auto simp: cCons_def split: if_splits)
- note IH = Cons(1)[OF empty]
- from IH[of m] IH[of "m - 1"] g show ?case
- by (cases m) (auto simp: field_simps)
- qed
- from True have "nth_default 0 (pderiv_coeffs_code f (x # xs)) n = 0"
- by (auto simp: cCons_def n)
- moreover from True have "(f + of_nat n) * nth_default 0 (x # xs) n = 0"
- by (simp add: n) (use empty[of "f+1"] in \<open>auto simp: field_simps\<close>)
- ultimately show ?thesis by simp
- qed
- qed
-qed
-
-lemma map_upt_Suc: "map f [0 ..< Suc n] = f 0 # map (\<lambda>i. f (Suc i)) [0 ..< n]"
- by (induct n arbitrary: f) auto
-
-lemma coeffs_pderiv_code [code abstract]: "coeffs (pderiv p) = pderiv_coeffs (coeffs p)"
- unfolding pderiv_coeffs_def
-proof (rule coeffs_eqI, unfold pderiv_coeffs_code coeff_pderiv, goal_cases)
- case (1 n)
- have id: "coeff p (Suc n) = nth_default 0 (map (\<lambda>i. coeff p (Suc i)) [0..<degree p]) n"
- by (cases "n < degree p") (auto simp: nth_default_def coeff_eq_0)
- show ?case
- unfolding coeffs_def map_upt_Suc by (auto simp: id)
-next
- case 2
- obtain n :: 'a and xs where defs: "tl (coeffs p) = xs" "1 = n"
- by simp
- from 2 show ?case
- unfolding defs by (induct xs arbitrary: n) (auto simp: cCons_def)
-qed
-
-lemma pderiv_eq_0_iff: "pderiv p = 0 \<longleftrightarrow> degree p = 0"
- for p :: "'a::{comm_semiring_1,semiring_no_zero_divisors,semiring_char_0} poly"
- apply (rule iffI)
- apply (cases p)
- apply simp
- apply (simp add: poly_eq_iff coeff_pderiv del: of_nat_Suc)
- apply (simp add: poly_eq_iff coeff_pderiv coeff_eq_0)
- done
-
-lemma degree_pderiv: "degree (pderiv p) = degree p - 1"
- for p :: "'a::{comm_semiring_1,semiring_no_zero_divisors,semiring_char_0} poly"
- apply (rule order_antisym [OF degree_le])
- apply (simp add: coeff_pderiv coeff_eq_0)
- apply (cases "degree p")
- apply simp
- apply (rule le_degree)
- apply (simp add: coeff_pderiv del: of_nat_Suc)
- apply (metis degree_0 leading_coeff_0_iff nat.distinct(1))
- done
-
-lemma not_dvd_pderiv:
- fixes p :: "'a::{comm_semiring_1,semiring_no_zero_divisors,semiring_char_0} poly"
- assumes "degree p \<noteq> 0"
- shows "\<not> p dvd pderiv p"
-proof
- assume dvd: "p dvd pderiv p"
- then obtain q where p: "pderiv p = p * q"
- unfolding dvd_def by auto
- from dvd have le: "degree p \<le> degree (pderiv p)"
- by (simp add: assms dvd_imp_degree_le pderiv_eq_0_iff)
- from assms and this [unfolded degree_pderiv]
- show False by auto
-qed
-
-lemma dvd_pderiv_iff [simp]: "p dvd pderiv p \<longleftrightarrow> degree p = 0"
- for p :: "'a::{comm_semiring_1,semiring_no_zero_divisors,semiring_char_0} poly"
- using not_dvd_pderiv[of p] by (auto simp: pderiv_eq_0_iff [symmetric])
-
-lemma pderiv_singleton [simp]: "pderiv [:a:] = 0"
- by (simp add: pderiv_pCons)
-
-lemma pderiv_add: "pderiv (p + q) = pderiv p + pderiv q"
- by (rule poly_eqI) (simp add: coeff_pderiv algebra_simps)
-
-lemma pderiv_minus: "pderiv (- p :: 'a :: idom poly) = - pderiv p"
- by (rule poly_eqI) (simp add: coeff_pderiv algebra_simps)
-
-lemma pderiv_diff: "pderiv ((p :: _ :: idom poly) - q) = pderiv p - pderiv q"
- by (rule poly_eqI) (simp add: coeff_pderiv algebra_simps)
-
-lemma pderiv_smult: "pderiv (smult a p) = smult a (pderiv p)"
- by (rule poly_eqI) (simp add: coeff_pderiv algebra_simps)
-
-lemma pderiv_mult: "pderiv (p * q) = p * pderiv q + q * pderiv p"
- by (induct p) (auto simp: pderiv_add pderiv_smult pderiv_pCons algebra_simps)
-
-lemma pderiv_power_Suc: "pderiv (p ^ Suc n) = smult (of_nat (Suc n)) (p ^ n) * pderiv p"
- apply (induct n)
- apply simp
- apply (subst power_Suc)
- apply (subst pderiv_mult)
- apply (erule ssubst)
- apply (simp only: of_nat_Suc smult_add_left smult_1_left)
- apply (simp add: algebra_simps)
- done
-
-lemma pderiv_prod: "pderiv (prod f (as)) = (\<Sum>a\<in>as. prod f (as - {a}) * pderiv (f a))"
-proof (induct as rule: infinite_finite_induct)
- case (insert a as)
- then have id: "prod f (insert a as) = f a * prod f as"
- "\<And>g. sum g (insert a as) = g a + sum g as"
- "insert a as - {a} = as"
- by auto
- have "prod f (insert a as - {b}) = f a * prod f (as - {b})" if "b \<in> as" for b
- proof -
- from \<open>a \<notin> as\<close> that have *: "insert a as - {b} = insert a (as - {b})"
- by auto
- show ?thesis
- unfolding * by (subst prod.insert) (use insert in auto)
- qed
- then show ?case
- unfolding id pderiv_mult insert(3) sum_distrib_left
- by (auto simp add: ac_simps intro!: sum.cong)
-qed auto
-
-lemma DERIV_pow2: "DERIV (\<lambda>x. x ^ Suc n) x :> real (Suc n) * (x ^ n)"
- by (rule DERIV_cong, rule DERIV_pow) simp
-declare DERIV_pow2 [simp] DERIV_pow [simp]
-
-lemma DERIV_add_const: "DERIV f x :> D \<Longrightarrow> DERIV (\<lambda>x. a + f x :: 'a::real_normed_field) x :> D"
- by (rule DERIV_cong, rule DERIV_add) auto
-
-lemma poly_DERIV [simp]: "DERIV (\<lambda>x. poly p x) x :> poly (pderiv p) x"
- by (induct p) (auto intro!: derivative_eq_intros simp add: pderiv_pCons)
-
-lemma continuous_on_poly [continuous_intros]:
- fixes p :: "'a :: {real_normed_field} poly"
- assumes "continuous_on A f"
- shows "continuous_on A (\<lambda>x. poly p (f x))"
-proof -
- have "continuous_on A (\<lambda>x. (\<Sum>i\<le>degree p. (f x) ^ i * coeff p i))"
- by (intro continuous_intros assms)
- also have "\<dots> = (\<lambda>x. poly p (f x))"
- by (rule ext) (simp add: poly_altdef mult_ac)
- finally show ?thesis .
-qed
-
-text \<open>Consequences of the derivative theorem above.\<close>
-
-lemma poly_differentiable[simp]: "(\<lambda>x. poly p x) differentiable (at x)"
- for x :: real
- by (simp add: real_differentiable_def) (blast intro: poly_DERIV)
-
-lemma poly_isCont[simp]: "isCont (\<lambda>x. poly p x) x"
- for x :: real
- by (rule poly_DERIV [THEN DERIV_isCont])
-
-lemma poly_IVT_pos: "a < b \<Longrightarrow> poly p a < 0 \<Longrightarrow> 0 < poly p b \<Longrightarrow> \<exists>x. a < x \<and> x < b \<and> poly p x = 0"
- for a b :: real
- using IVT_objl [of "poly p" a 0 b] by (auto simp add: order_le_less)
-
-lemma poly_IVT_neg: "a < b \<Longrightarrow> 0 < poly p a \<Longrightarrow> poly p b < 0 \<Longrightarrow> \<exists>x. a < x \<and> x < b \<and> poly p x = 0"
- for a b :: real
- using poly_IVT_pos [where p = "- p"] by simp
-
-lemma poly_IVT: "a < b \<Longrightarrow> poly p a * poly p b < 0 \<Longrightarrow> \<exists>x>a. x < b \<and> poly p x = 0"
- for p :: "real poly"
- by (metis less_not_sym mult_less_0_iff poly_IVT_neg poly_IVT_pos)
-
-lemma poly_MVT: "a < b \<Longrightarrow> \<exists>x. a < x \<and> x < b \<and> poly p b - poly p a = (b - a) * poly (pderiv p) x"
- for a b :: real
- using MVT [of a b "poly p"]
- apply auto
- apply (rule_tac x = z in exI)
- apply (auto simp add: mult_left_cancel poly_DERIV [THEN DERIV_unique])
- done
-
-lemma poly_MVT':
- fixes a b :: real
- assumes "{min a b..max a b} \<subseteq> A"
- shows "\<exists>x\<in>A. poly p b - poly p a = (b - a) * poly (pderiv p) x"
-proof (cases a b rule: linorder_cases)
- case less
- from poly_MVT[OF less, of p] guess x by (elim exE conjE)
- then show ?thesis by (intro bexI[of _ x]) (auto intro!: subsetD[OF assms])
-next
- case greater
- from poly_MVT[OF greater, of p] guess x by (elim exE conjE)
- then show ?thesis by (intro bexI[of _ x]) (auto simp: algebra_simps intro!: subsetD[OF assms])
-qed (use assms in auto)
-
-lemma poly_pinfty_gt_lc:
- fixes p :: "real poly"
- assumes "lead_coeff p > 0"
- shows "\<exists>n. \<forall> x \<ge> n. poly p x \<ge> lead_coeff p"
- using assms
-proof (induct p)
- case 0
- then show ?case by auto
-next
- case (pCons a p)
- from this(1) consider "a \<noteq> 0" "p = 0" | "p \<noteq> 0" by auto
- then show ?case
- proof cases
- case 1
- then show ?thesis by auto
- next
- case 2
- with pCons obtain n1 where gte_lcoeff: "\<forall>x\<ge>n1. lead_coeff p \<le> poly p x"
- by auto
- from pCons(3) \<open>p \<noteq> 0\<close> have gt_0: "lead_coeff p > 0" by auto
- define n where "n = max n1 (1 + \<bar>a\<bar> / lead_coeff p)"
- have "lead_coeff (pCons a p) \<le> poly (pCons a p) x" if "n \<le> x" for x
- proof -
- from gte_lcoeff that have "lead_coeff p \<le> poly p x"
- by (auto simp: n_def)
- with gt_0 have "\<bar>a\<bar> / lead_coeff p \<ge> \<bar>a\<bar> / poly p x" and "poly p x > 0"
- by (auto intro: frac_le)
- with \<open>n \<le> x\<close>[unfolded n_def] have "x \<ge> 1 + \<bar>a\<bar> / poly p x"
- by auto
- with \<open>lead_coeff p \<le> poly p x\<close> \<open>poly p x > 0\<close> \<open>p \<noteq> 0\<close>
- show "lead_coeff (pCons a p) \<le> poly (pCons a p) x"
- by (auto simp: field_simps)
- qed
- then show ?thesis by blast
- qed
-qed
-
-lemma lemma_order_pderiv1:
- "pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q +
- smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)"
- by (simp only: pderiv_mult pderiv_power_Suc) (simp del: power_Suc of_nat_Suc add: pderiv_pCons)
-
-lemma lemma_order_pderiv:
- fixes p :: "'a :: field_char_0 poly"
- assumes n: "0 < n"
- and pd: "pderiv p \<noteq> 0"
- and pe: "p = [:- a, 1:] ^ n * q"
- and nd: "\<not> [:- a, 1:] dvd q"
- shows "n = Suc (order a (pderiv p))"
-proof -
- from assms have "pderiv ([:- a, 1:] ^ n * q) \<noteq> 0"
- by auto
- from assms obtain n' where "n = Suc n'" "0 < Suc n'" "pderiv ([:- a, 1:] ^ Suc n' * q) \<noteq> 0"
- by (cases n) auto
- have *: "k dvd k * pderiv q + smult (of_nat (Suc n')) l \<Longrightarrow> k dvd l" for k l
- by (auto simp del: of_nat_Suc simp: dvd_add_right_iff dvd_smult_iff)
- have "n' = order a (pderiv ([:- a, 1:] ^ Suc n' * q))"
- proof (rule order_unique_lemma)
- show "[:- a, 1:] ^ n' dvd pderiv ([:- a, 1:] ^ Suc n' * q)"
- apply (subst lemma_order_pderiv1)
- apply (rule dvd_add)
- apply (metis dvdI dvd_mult2 power_Suc2)
- apply (metis dvd_smult dvd_triv_right)
- done
- show "\<not> [:- a, 1:] ^ Suc n' dvd pderiv ([:- a, 1:] ^ Suc n' * q)"
- apply (subst lemma_order_pderiv1)
- apply (metis * nd dvd_mult_cancel_right power_not_zero pCons_eq_0_iff power_Suc zero_neq_one)
- done
- qed
- then show ?thesis
- by (metis \<open>n = Suc n'\<close> pe)
-qed
-
-lemma order_pderiv: "pderiv p \<noteq> 0 \<Longrightarrow> order a p \<noteq> 0 \<Longrightarrow> order a p = Suc (order a (pderiv p))"
- for p :: "'a::field_char_0 poly"
- apply (cases "p = 0")
- apply simp
- apply (drule_tac a = a and p = p in order_decomp)
- using neq0_conv
- apply (blast intro: lemma_order_pderiv)
- done
-
-lemma poly_squarefree_decomp_order:
- fixes p :: "'a::field_char_0 poly"
- assumes "pderiv p \<noteq> 0"
- and p: "p = q * d"
- and p': "pderiv p = e * d"
- and d: "d = r * p + s * pderiv p"
- shows "order a q = (if order a p = 0 then 0 else 1)"
-proof (rule classical)
- assume 1: "\<not> ?thesis"
- from \<open>pderiv p \<noteq> 0\<close> have "p \<noteq> 0" by auto
- with p have "order a p = order a q + order a d"
- by (simp add: order_mult)
- with 1 have "order a p \<noteq> 0"
- by (auto split: if_splits)
- from \<open>pderiv p \<noteq> 0\<close> \<open>pderiv p = e * d\<close> have "order a (pderiv p) = order a e + order a d"
- by (simp add: order_mult)
- from \<open>pderiv p \<noteq> 0\<close> \<open>order a p \<noteq> 0\<close> have "order a p = Suc (order a (pderiv p))"
- by (rule order_pderiv)
- from \<open>p \<noteq> 0\<close> \<open>p = q * d\<close> have "d \<noteq> 0"
- by simp
- have "([:-a, 1:] ^ (order a (pderiv p))) dvd d"
- apply (simp add: d)
- apply (rule dvd_add)
- apply (rule dvd_mult)
- apply (simp add: order_divides \<open>p \<noteq> 0\<close> \<open>order a p = Suc (order a (pderiv p))\<close>)
- apply (rule dvd_mult)
- apply (simp add: order_divides)
- done
- with \<open>d \<noteq> 0\<close> have "order a (pderiv p) \<le> order a d"
- by (simp add: order_divides)
- show ?thesis
- using \<open>order a p = order a q + order a d\<close>
- and \<open>order a (pderiv p) = order a e + order a d\<close>
- and \<open>order a p = Suc (order a (pderiv p))\<close>
- and \<open>order a (pderiv p) \<le> order a d\<close>
- by auto
-qed
-
-lemma poly_squarefree_decomp_order2:
- "pderiv p \<noteq> 0 \<Longrightarrow> p = q * d \<Longrightarrow> pderiv p = e * d \<Longrightarrow>
- d = r * p + s * pderiv p \<Longrightarrow> \<forall>a. order a q = (if order a p = 0 then 0 else 1)"
- for p :: "'a::field_char_0 poly"
- by (blast intro: poly_squarefree_decomp_order)
-
-lemma order_pderiv2:
- "pderiv p \<noteq> 0 \<Longrightarrow> order a p \<noteq> 0 \<Longrightarrow> order a (pderiv p) = n \<longleftrightarrow> order a p = Suc n"
- for p :: "'a::field_char_0 poly"
- by (auto dest: order_pderiv)
-
-definition rsquarefree :: "'a::idom poly \<Rightarrow> bool"
- where "rsquarefree p \<longleftrightarrow> p \<noteq> 0 \<and> (\<forall>a. order a p = 0 \<or> order a p = 1)"
-
-lemma pderiv_iszero: "pderiv p = 0 \<Longrightarrow> \<exists>h. p = [:h:]"
- for p :: "'a::{semidom,semiring_char_0} poly"
- by (cases p) (auto simp: pderiv_eq_0_iff split: if_splits)
-
-lemma rsquarefree_roots: "rsquarefree p \<longleftrightarrow> (\<forall>a. \<not> (poly p a = 0 \<and> poly (pderiv p) a = 0))"
- for p :: "'a::field_char_0 poly"
- apply (simp add: rsquarefree_def)
- apply (case_tac "p = 0")
- apply simp
- apply simp
- apply (case_tac "pderiv p = 0")
- apply simp
- apply (drule pderiv_iszero, clarsimp)
- apply (metis coeff_0 coeff_pCons_0 degree_pCons_0 le0 le_antisym order_degree)
- apply (force simp add: order_root order_pderiv2)
- done
-
-lemma poly_squarefree_decomp:
- fixes p :: "'a::field_char_0 poly"
- assumes "pderiv p \<noteq> 0"
- and "p = q * d"
- and "pderiv p = e * d"
- and "d = r * p + s * pderiv p"
- shows "rsquarefree q \<and> (\<forall>a. poly q a = 0 \<longleftrightarrow> poly p a = 0)"
-proof -
- from \<open>pderiv p \<noteq> 0\<close> have "p \<noteq> 0" by auto
- with \<open>p = q * d\<close> have "q \<noteq> 0" by simp
- from assms have "\<forall>a. order a q = (if order a p = 0 then 0 else 1)"
- by (rule poly_squarefree_decomp_order2)
- with \<open>p \<noteq> 0\<close> \<open>q \<noteq> 0\<close> show ?thesis
- by (simp add: rsquarefree_def order_root)
-qed
-
-
-subsection \<open>Algebraic numbers\<close>
-
-text \<open>
- Algebraic numbers can be defined in two equivalent ways: all real numbers that are
- roots of rational polynomials or of integer polynomials. The Algebraic-Numbers AFP entry
- uses the rational definition, but we need the integer definition.
-
- The equivalence is obvious since any rational polynomial can be multiplied with the
- LCM of its coefficients, yielding an integer polynomial with the same roots.
-\<close>
-
-definition algebraic :: "'a :: field_char_0 \<Rightarrow> bool"
- where "algebraic x \<longleftrightarrow> (\<exists>p. (\<forall>i. coeff p i \<in> \<int>) \<and> p \<noteq> 0 \<and> poly p x = 0)"
-
-lemma algebraicI: "(\<And>i. coeff p i \<in> \<int>) \<Longrightarrow> p \<noteq> 0 \<Longrightarrow> poly p x = 0 \<Longrightarrow> algebraic x"
- unfolding algebraic_def by blast
-
-lemma algebraicE:
- assumes "algebraic x"
- obtains p where "\<And>i. coeff p i \<in> \<int>" "p \<noteq> 0" "poly p x = 0"
- using assms unfolding algebraic_def by blast
-
-lemma algebraic_altdef: "algebraic x \<longleftrightarrow> (\<exists>p. (\<forall>i. coeff p i \<in> \<rat>) \<and> p \<noteq> 0 \<and> poly p x = 0)"
- for p :: "'a::field_char_0 poly"
-proof safe
- fix p
- assume rat: "\<forall>i. coeff p i \<in> \<rat>" and root: "poly p x = 0" and nz: "p \<noteq> 0"
- define cs where "cs = coeffs p"
- from rat have "\<forall>c\<in>range (coeff p). \<exists>c'. c = of_rat c'"
- unfolding Rats_def by blast
- then obtain f where f: "coeff p i = of_rat (f (coeff p i))" for i
- by (subst (asm) bchoice_iff) blast
- define cs' where "cs' = map (quotient_of \<circ> f) (coeffs p)"
- define d where "d = Lcm (set (map snd cs'))"
- define p' where "p' = smult (of_int d) p"
-
- have "coeff p' n \<in> \<int>" for n
- proof (cases "n \<le> degree p")
- case True
- define c where "c = coeff p n"
- define a where "a = fst (quotient_of (f (coeff p n)))"
- define b where "b = snd (quotient_of (f (coeff p n)))"
- have b_pos: "b > 0"
- unfolding b_def using quotient_of_denom_pos' by simp
- have "coeff p' n = of_int d * coeff p n"
- by (simp add: p'_def)
- also have "coeff p n = of_rat (of_int a / of_int b)"
- unfolding a_def b_def
- by (subst quotient_of_div [of "f (coeff p n)", symmetric]) (simp_all add: f [symmetric])
- also have "of_int d * \<dots> = of_rat (of_int (a*d) / of_int b)"
- by (simp add: of_rat_mult of_rat_divide)
- also from nz True have "b \<in> snd ` set cs'"
- by (force simp: cs'_def o_def b_def coeffs_def simp del: upt_Suc)
- then have "b dvd (a * d)"
- by (simp add: d_def)
- then have "of_int (a * d) / of_int b \<in> (\<int> :: rat set)"
- by (rule of_int_divide_in_Ints)
- then have "of_rat (of_int (a * d) / of_int b) \<in> \<int>" by (elim Ints_cases) auto
- finally show ?thesis .
- next
- case False
- then show ?thesis
- by (auto simp: p'_def not_le coeff_eq_0)
- qed
- moreover have "set (map snd cs') \<subseteq> {0<..}"
- unfolding cs'_def using quotient_of_denom_pos' by (auto simp: coeffs_def simp del: upt_Suc)
- then have "d \<noteq> 0"
- unfolding d_def by (induct cs') simp_all
- with nz have "p' \<noteq> 0" by (simp add: p'_def)
- moreover from root have "poly p' x = 0"
- by (simp add: p'_def)
- ultimately show "algebraic x"
- unfolding algebraic_def by blast
-next
- assume "algebraic x"
- then obtain p where p: "coeff p i \<in> \<int>" "poly p x = 0" "p \<noteq> 0" for i
- by (force simp: algebraic_def)
- moreover have "coeff p i \<in> \<int> \<Longrightarrow> coeff p i \<in> \<rat>" for i
- by (elim Ints_cases) simp
- ultimately show "\<exists>p. (\<forall>i. coeff p i \<in> \<rat>) \<and> p \<noteq> 0 \<and> poly p x = 0" by auto
-qed
-
-
-subsection \<open>Content and primitive part of a polynomial\<close>
-
-definition content :: "'a::semiring_gcd poly \<Rightarrow> 'a"
- where "content p = gcd_list (coeffs p)"
-
-lemma content_eq_fold_coeffs [code]: "content p = fold_coeffs gcd p 0"
- by (simp add: content_def Gcd_fin.set_eq_fold fold_coeffs_def foldr_fold fun_eq_iff ac_simps)
-
-lemma content_0 [simp]: "content 0 = 0"
- by (simp add: content_def)
-
-lemma content_1 [simp]: "content 1 = 1"
- by (simp add: content_def)
-
-lemma content_const [simp]: "content [:c:] = normalize c"
- by (simp add: content_def cCons_def)
-
-lemma const_poly_dvd_iff_dvd_content: "[:c:] dvd p \<longleftrightarrow> c dvd content p"
- for c :: "'a::semiring_gcd"
-proof (cases "p = 0")
- case True
- then show ?thesis by simp
-next
- case False
- have "[:c:] dvd p \<longleftrightarrow> (\<forall>n. c dvd coeff p n)"
- by (rule const_poly_dvd_iff)
- also have "\<dots> \<longleftrightarrow> (\<forall>a\<in>set (coeffs p). c dvd a)"
- proof safe
- fix n :: nat
- assume "\<forall>a\<in>set (coeffs p). c dvd a"
- then show "c dvd coeff p n"
- by (cases "n \<le> degree p") (auto simp: coeff_eq_0 coeffs_def split: if_splits)
- qed (auto simp: coeffs_def simp del: upt_Suc split: if_splits)
- also have "\<dots> \<longleftrightarrow> c dvd content p"
- by (simp add: content_def dvd_Gcd_fin_iff dvd_mult_unit_iff)
- finally show ?thesis .
-qed
-
-lemma content_dvd [simp]: "[:content p:] dvd p"
- by (subst const_poly_dvd_iff_dvd_content) simp_all
-
-lemma content_dvd_coeff [simp]: "content p dvd coeff p n"
-proof (cases "p = 0")
- case True
- then show ?thesis
- by simp
-next
- case False
- then show ?thesis
- by (cases "n \<le> degree p")
- (auto simp add: content_def not_le coeff_eq_0 coeff_in_coeffs intro: Gcd_fin_dvd)
-qed
-
-lemma content_dvd_coeffs: "c \<in> set (coeffs p) \<Longrightarrow> content p dvd c"
- by (simp add: content_def Gcd_fin_dvd)
-
-lemma normalize_content [simp]: "normalize (content p) = content p"
- by (simp add: content_def)
-
-lemma is_unit_content_iff [simp]: "is_unit (content p) \<longleftrightarrow> content p = 1"
-proof
- assume "is_unit (content p)"
- then have "normalize (content p) = 1" by (simp add: is_unit_normalize del: normalize_content)
- then show "content p = 1" by simp
-qed auto
-
-lemma content_smult [simp]: "content (smult c p) = normalize c * content p"
- by (simp add: content_def coeffs_smult Gcd_fin_mult)
-
-lemma content_eq_zero_iff [simp]: "content p = 0 \<longleftrightarrow> p = 0"
- by (auto simp: content_def simp: poly_eq_iff coeffs_def)
-
-definition primitive_part :: "'a :: semiring_gcd poly \<Rightarrow> 'a poly"
- where "primitive_part p = map_poly (\<lambda>x. x div content p) p"
-
-lemma primitive_part_0 [simp]: "primitive_part 0 = 0"
- by (simp add: primitive_part_def)
-
-lemma content_times_primitive_part [simp]: "smult (content p) (primitive_part p) = p"
- for p :: "'a :: semiring_gcd poly"
-proof (cases "p = 0")
- case True
- then show ?thesis by simp
-next
- case False
- then show ?thesis
- unfolding primitive_part_def
- by (auto simp: smult_conv_map_poly map_poly_map_poly o_def content_dvd_coeffs
- intro: map_poly_idI)
-qed
-
-lemma primitive_part_eq_0_iff [simp]: "primitive_part p = 0 \<longleftrightarrow> p = 0"
-proof (cases "p = 0")
- case True
- then show ?thesis by simp
-next
- case False
- then have "primitive_part p = map_poly (\<lambda>x. x div content p) p"
- by (simp add: primitive_part_def)
- also from False have "\<dots> = 0 \<longleftrightarrow> p = 0"
- by (intro map_poly_eq_0_iff) (auto simp: dvd_div_eq_0_iff content_dvd_coeffs)
- finally show ?thesis
- using False by simp
-qed
-
-lemma content_primitive_part [simp]:
- assumes "p \<noteq> 0"
- shows "content (primitive_part p) = 1"
-proof -
- have "p = smult (content p) (primitive_part p)"
- by simp
- also have "content \<dots> = content (primitive_part p) * content p"
- by (simp del: content_times_primitive_part add: ac_simps)
- finally have "1 * content p = content (primitive_part p) * content p"
- by simp
- then have "1 * content p div content p = content (primitive_part p) * content p div content p"
- by simp
- with assms show ?thesis
- by simp
-qed
-
-lemma content_decompose:
- obtains p' :: "'a::semiring_gcd poly" where "p = smult (content p) p'" "content p' = 1"
-proof (cases "p = 0")
- case True
- then show ?thesis by (intro that[of 1]) simp_all
-next
- case False
- from content_dvd[of p] obtain r where r: "p = [:content p:] * r"
- by (rule dvdE)
- have "content p * 1 = content p * content r"
- by (subst r) simp
- with False have "content r = 1"
- by (subst (asm) mult_left_cancel) simp_all
- with r show ?thesis
- by (intro that[of r]) simp_all
-qed
-
-lemma content_dvd_contentI [intro]: "p dvd q \<Longrightarrow> content p dvd content q"
- using const_poly_dvd_iff_dvd_content content_dvd dvd_trans by blast
-
-lemma primitive_part_const_poly [simp]: "primitive_part [:x:] = [:unit_factor x:]"
- by (simp add: primitive_part_def map_poly_pCons)
-
-lemma primitive_part_prim: "content p = 1 \<Longrightarrow> primitive_part p = p"
- by (auto simp: primitive_part_def)
-
-lemma degree_primitive_part [simp]: "degree (primitive_part p) = degree p"
-proof (cases "p = 0")
- case True
- then show ?thesis by simp
-next
- case False
- have "p = smult (content p) (primitive_part p)"
- by simp
- also from False have "degree \<dots> = degree (primitive_part p)"
- by (subst degree_smult_eq) simp_all
- finally show ?thesis ..
-qed
-
-
-subsection \<open>Division of polynomials\<close>
-
-subsubsection \<open>Division in general\<close>
-
-instantiation poly :: (idom_divide) idom_divide
-begin
-
-fun divide_poly_main :: "'a \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a poly"
- where
- "divide_poly_main lc q r d dr (Suc n) =
- (let cr = coeff r dr; a = cr div lc; mon = monom a n in
- if False \<or> a * lc = cr then (* False \<or> is only because of problem in function-package *)
- divide_poly_main
- lc
- (q + mon)
- (r - mon * d)
- d (dr - 1) n else 0)"
- | "divide_poly_main lc q r d dr 0 = q"
-
-definition divide_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
- where "divide_poly f g =
- (if g = 0 then 0
- else
- divide_poly_main (coeff g (degree g)) 0 f g (degree f)
- (1 + length (coeffs f) - length (coeffs g)))"
-
-lemma divide_poly_main:
- assumes d: "d \<noteq> 0" "lc = coeff d (degree d)"
- and "degree (d * r) \<le> dr" "divide_poly_main lc q (d * r) d dr n = q'"
- and "n = 1 + dr - degree d \<or> dr = 0 \<and> n = 0 \<and> d * r = 0"
- shows "q' = q + r"
- using assms(3-)
-proof (induct n arbitrary: q r dr)
- case (Suc n)
- let ?rr = "d * r"
- let ?a = "coeff ?rr dr"
- let ?qq = "?a div lc"
- define b where [simp]: "b = monom ?qq n"
- let ?rrr = "d * (r - b)"
- let ?qqq = "q + b"
- note res = Suc(3)
- from Suc(4) have dr: "dr = n + degree d" by auto
- from d have lc: "lc \<noteq> 0" by auto
- have "coeff (b * d) dr = coeff b n * coeff d (degree d)"
- proof (cases "?qq = 0")
- case True
- then show ?thesis by simp
- next
- case False
- then have n: "n = degree b"
- by (simp add: degree_monom_eq)
- show ?thesis
- unfolding n dr by (simp add: coeff_mult_degree_sum)
- qed
- also have "\<dots> = lc * coeff b n"
- by (simp add: d)
- finally have c2: "coeff (b * d) dr = lc * coeff b n" .
- have rrr: "?rrr = ?rr - b * d"
- by (simp add: field_simps)
- have c1: "coeff (d * r) dr = lc * coeff r n"
- proof (cases "degree r = n")
- case True
- with Suc(2) show ?thesis
- unfolding dr using coeff_mult_degree_sum[of d r] d by (auto simp: ac_simps)
- next
- case False
- from dr Suc(2) have "degree r \<le> n"
- by auto
- (metis add.commute add_le_cancel_left d(1) degree_0 degree_mult_eq
- diff_is_0_eq diff_zero le_cases)
- with False have r_n: "degree r < n"
- by auto
- then have right: "lc * coeff r n = 0"
- by (simp add: coeff_eq_0)
- have "coeff (d * r) dr = coeff (d * r) (degree d + n)"
- by (simp add: dr ac_simps)
- also from r_n have "\<dots> = 0"
- by (metis False Suc.prems(1) add.commute add_left_imp_eq coeff_degree_mult coeff_eq_0
- coeff_mult_degree_sum degree_mult_le dr le_eq_less_or_eq)
- finally show ?thesis
- by (simp only: right)
- qed
- have c0: "coeff ?rrr dr = 0"
- and id: "lc * (coeff (d * r) dr div lc) = coeff (d * r) dr"
- unfolding rrr coeff_diff c2
- unfolding b_def coeff_monom coeff_smult c1 using lc by auto
- from res[unfolded divide_poly_main.simps[of lc q] Let_def] id
- have res: "divide_poly_main lc ?qqq ?rrr d (dr - 1) n = q'"
- by (simp del: divide_poly_main.simps add: field_simps)
- note IH = Suc(1)[OF _ res]
- from Suc(4) have dr: "dr = n + degree d" by auto
- from Suc(2) have deg_rr: "degree ?rr \<le> dr" by auto
- have deg_bd: "degree (b * d) \<le> dr"
- unfolding dr b_def by (rule order.trans[OF degree_mult_le]) (auto simp: degree_monom_le)
- have "degree ?rrr \<le> dr"
- unfolding rrr by (rule degree_diff_le[OF deg_rr deg_bd])
- with c0 have deg_rrr: "degree ?rrr \<le> (dr - 1)"
- by (rule coeff_0_degree_minus_1)
- have "n = 1 + (dr - 1) - degree d \<or> dr - 1 = 0 \<and> n = 0 \<and> ?rrr = 0"
- proof (cases dr)
- case 0
- with Suc(4) have 0: "dr = 0" "n = 0" "degree d = 0"
- by auto
- with deg_rrr have "degree ?rrr = 0"
- by simp
- from degree_eq_zeroE[OF this] obtain a where rrr: "?rrr = [:a:]"
- by metis
- show ?thesis
- unfolding 0 using c0 unfolding rrr 0 by simp
- next
- case _: Suc
- with Suc(4) show ?thesis by auto
- qed
- from IH[OF deg_rrr this] show ?case
- by simp
-next
- case 0
- show ?case
- proof (cases "r = 0")
- case True
- with 0 show ?thesis by auto
- next
- case False
- from d False have "degree (d * r) = degree d + degree r"
- by (subst degree_mult_eq) auto
- with 0 d show ?thesis by auto
- qed
-qed
-
-lemma divide_poly_main_0: "divide_poly_main 0 0 r d dr n = 0"
-proof (induct n arbitrary: r d dr)
- case 0
- then show ?case by simp
-next
- case Suc
- show ?case
- unfolding divide_poly_main.simps[of _ _ r] Let_def
- by (simp add: Suc del: divide_poly_main.simps)
-qed
-
-lemma divide_poly:
- assumes g: "g \<noteq> 0"
- shows "(f * g) div g = (f :: 'a poly)"
-proof -
- have len: "length (coeffs f) = Suc (degree f)" if "f \<noteq> 0" for f :: "'a poly"
- using that unfolding degree_eq_length_coeffs by auto
- have "divide_poly_main (coeff g (degree g)) 0 (g * f) g (degree (g * f))
- (1 + length (coeffs (g * f)) - length (coeffs g)) = (f * g) div g"
- by (simp add: divide_poly_def Let_def ac_simps)
- note main = divide_poly_main[OF g refl le_refl this]
- have "(f * g) div g = 0 + f"
- proof (rule main, goal_cases)
- case 1
- show ?case
- proof (cases "f = 0")
- case True
- with g show ?thesis
- by (auto simp: degree_eq_length_coeffs)
- next
- case False
- with g have fg: "g * f \<noteq> 0" by auto
- show ?thesis
- unfolding len[OF fg] len[OF g] by auto
- qed
- qed
- then show ?thesis by simp
-qed
-
-lemma divide_poly_0: "f div 0 = 0"
- for f :: "'a poly"
- by (simp add: divide_poly_def Let_def divide_poly_main_0)
-
-instance
- by standard (auto simp: divide_poly divide_poly_0)
-
-end
-
-instance poly :: (idom_divide) algebraic_semidom ..
-
-lemma div_const_poly_conv_map_poly:
- assumes "[:c:] dvd p"
- shows "p div [:c:] = map_poly (\<lambda>x. x div c) p"
-proof (cases "c = 0")
- case True
- then show ?thesis
- by (auto intro!: poly_eqI simp: coeff_map_poly)
-next
- case False
- from assms obtain q where p: "p = [:c:] * q" by (rule dvdE)
- moreover {
- have "smult c q = [:c:] * q"
- by simp
- also have "\<dots> div [:c:] = q"
- by (rule nonzero_mult_div_cancel_left) (use False in auto)
- finally have "smult c q div [:c:] = q" .
- }
- ultimately show ?thesis by (intro poly_eqI) (auto simp: coeff_map_poly False)
-qed
-
-lemma is_unit_monom_0:
- fixes a :: "'a::field"
- assumes "a \<noteq> 0"
- shows "is_unit (monom a 0)"
-proof
- from assms show "1 = monom a 0 * monom (inverse a) 0"
- by (simp add: mult_monom)
-qed
-
-lemma is_unit_triv: "a \<noteq> 0 \<Longrightarrow> is_unit [:a:]"
- for a :: "'a::field"
- by (simp add: is_unit_monom_0 monom_0 [symmetric])
-
-lemma is_unit_iff_degree:
- fixes p :: "'a::field poly"
- assumes "p \<noteq> 0"
- shows "is_unit p \<longleftrightarrow> degree p = 0"
- (is "?lhs \<longleftrightarrow> ?rhs")
-proof
- assume ?rhs
- then obtain a where "p = [:a:]"
- by (rule degree_eq_zeroE)
- with assms show ?lhs
- by (simp add: is_unit_triv)
-next
- assume ?lhs
- then obtain q where "q \<noteq> 0" "p * q = 1" ..
- then have "degree (p * q) = degree 1"
- by simp
- with \<open>p \<noteq> 0\<close> \<open>q \<noteq> 0\<close> have "degree p + degree q = 0"
- by (simp add: degree_mult_eq)
- then show ?rhs by simp
-qed
-
-lemma is_unit_pCons_iff: "is_unit (pCons a p) \<longleftrightarrow> p = 0 \<and> a \<noteq> 0"
- for p :: "'a::field poly"
- by (cases "p = 0") (auto simp: is_unit_triv is_unit_iff_degree)
-
-lemma is_unit_monom_trival: "is_unit p \<Longrightarrow> monom (coeff p (degree p)) 0 = p"
- for p :: "'a::field poly"
- by (cases p) (simp_all add: monom_0 is_unit_pCons_iff)
-
-lemma is_unit_const_poly_iff: "[:c:] dvd 1 \<longleftrightarrow> c dvd 1"
- for c :: "'a::{comm_semiring_1,semiring_no_zero_divisors}"
- by (auto simp: one_poly_def)
-
-lemma is_unit_polyE:
- fixes p :: "'a :: {comm_semiring_1,semiring_no_zero_divisors} poly"
- assumes "p dvd 1"
- obtains c where "p = [:c:]" "c dvd 1"
-proof -
- from assms obtain q where "1 = p * q"
- by (rule dvdE)
- then have "p \<noteq> 0" and "q \<noteq> 0"
- by auto
- from \<open>1 = p * q\<close> have "degree 1 = degree (p * q)"
- by simp
- also from \<open>p \<noteq> 0\<close> and \<open>q \<noteq> 0\<close> have "\<dots> = degree p + degree q"
- by (simp add: degree_mult_eq)
- finally have "degree p = 0" by simp
- with degree_eq_zeroE obtain c where c: "p = [:c:]" .
- with \<open>p dvd 1\<close> have "c dvd 1"
- by (simp add: is_unit_const_poly_iff)
- with c show thesis ..
-qed
-
-lemma is_unit_polyE':
- fixes p :: "'a::field poly"
- assumes "is_unit p"
- obtains a where "p = monom a 0" and "a \<noteq> 0"
-proof -
- obtain a q where "p = pCons a q"
- by (cases p)
- with assms have "p = [:a:]" and "a \<noteq> 0"
- by (simp_all add: is_unit_pCons_iff)
- with that show thesis by (simp add: monom_0)
-qed
-
-lemma is_unit_poly_iff: "p dvd 1 \<longleftrightarrow> (\<exists>c. p = [:c:] \<and> c dvd 1)"
- for p :: "'a::{comm_semiring_1,semiring_no_zero_divisors} poly"
- by (auto elim: is_unit_polyE simp add: is_unit_const_poly_iff)
-
-
-subsubsection \<open>Pseudo-Division\<close>
-
-text \<open>This part is by René Thiemann and Akihisa Yamada.\<close>
-
-fun pseudo_divmod_main ::
- "'a :: comm_ring_1 \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a poly \<times> 'a poly"
- where
- "pseudo_divmod_main lc q r d dr (Suc n) =
- (let
- rr = smult lc r;
- qq = coeff r dr;
- rrr = rr - monom qq n * d;
- qqq = smult lc q + monom qq n
- in pseudo_divmod_main lc qqq rrr d (dr - 1) n)"
- | "pseudo_divmod_main lc q r d dr 0 = (q,r)"
-
-definition pseudo_divmod :: "'a :: comm_ring_1 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<times> 'a poly"
- where "pseudo_divmod p q \<equiv>
- if q = 0 then (0, p)
- else
- pseudo_divmod_main (coeff q (degree q)) 0 p q (degree p)
- (1 + length (coeffs p) - length (coeffs q))"
-
-lemma pseudo_divmod_main:
- assumes d: "d \<noteq> 0" "lc = coeff d (degree d)"
- and "degree r \<le> dr" "pseudo_divmod_main lc q r d dr n = (q',r')"
- and "n = 1 + dr - degree d \<or> dr = 0 \<and> n = 0 \<and> r = 0"
- shows "(r' = 0 \<or> degree r' < degree d) \<and> smult (lc^n) (d * q + r) = d * q' + r'"
- using assms(3-)
-proof (induct n arbitrary: q r dr)
- case 0
- then show ?case by auto
-next
- case (Suc n)
- let ?rr = "smult lc r"
- let ?qq = "coeff r dr"
- define b where [simp]: "b = monom ?qq n"
- let ?rrr = "?rr - b * d"
- let ?qqq = "smult lc q + b"
- note res = Suc(3)
- from res[unfolded pseudo_divmod_main.simps[of lc q] Let_def]
- have res: "pseudo_divmod_main lc ?qqq ?rrr d (dr - 1) n = (q',r')"
- by (simp del: pseudo_divmod_main.simps)
- from Suc(4) have dr: "dr = n + degree d" by auto
- have "coeff (b * d) dr = coeff b n * coeff d (degree d)"
- proof (cases "?qq = 0")
- case True
- then show ?thesis by auto
- next
- case False
- then have n: "n = degree b"
- by (simp add: degree_monom_eq)
- show ?thesis
- unfolding n dr by (simp add: coeff_mult_degree_sum)
- qed
- also have "\<dots> = lc * coeff b n" by (simp add: d)
- finally have "coeff (b * d) dr = lc * coeff b n" .
- moreover have "coeff ?rr dr = lc * coeff r dr"
- by simp
- ultimately have c0: "coeff ?rrr dr = 0"
- by auto
- from Suc(4) have dr: "dr = n + degree d" by auto
- have deg_rr: "degree ?rr \<le> dr"
- using Suc(2) degree_smult_le dual_order.trans by blast
- have deg_bd: "degree (b * d) \<le> dr"
- unfolding dr by (rule order.trans[OF degree_mult_le]) (auto simp: degree_monom_le)
- have "degree ?rrr \<le> dr"
- using degree_diff_le[OF deg_rr deg_bd] by auto
- with c0 have deg_rrr: "degree ?rrr \<le> (dr - 1)"
- by (rule coeff_0_degree_minus_1)
- have "n = 1 + (dr - 1) - degree d \<or> dr - 1 = 0 \<and> n = 0 \<and> ?rrr = 0"
- proof (cases dr)
- case 0
- with Suc(4) have 0: "dr = 0" "n = 0" "degree d = 0" by auto
- with deg_rrr have "degree ?rrr = 0" by simp
- then have "\<exists>a. ?rrr = [:a:]"
- by (metis degree_pCons_eq_if old.nat.distinct(2) pCons_cases)
- from this obtain a where rrr: "?rrr = [:a:]"
- by auto
- show ?thesis
- unfolding 0 using c0 unfolding rrr 0 by simp
- next
- case _: Suc
- with Suc(4) show ?thesis by auto
- qed
- note IH = Suc(1)[OF deg_rrr res this]
- show ?case
- proof (intro conjI)
- from IH show "r' = 0 \<or> degree r' < degree d"
- by blast
- show "smult (lc ^ Suc n) (d * q + r) = d * q' + r'"
- unfolding IH[THEN conjunct2,symmetric]
- by (simp add: field_simps smult_add_right)
- qed
-qed
-
-lemma pseudo_divmod:
- assumes g: "g \<noteq> 0"
- and *: "pseudo_divmod f g = (q,r)"
- shows "smult (coeff g (degree g) ^ (Suc (degree f) - degree g)) f = g * q + r" (is ?A)
- and "r = 0 \<or> degree r < degree g" (is ?B)
-proof -
- from *[unfolded pseudo_divmod_def Let_def]
- have "pseudo_divmod_main (coeff g (degree g)) 0 f g (degree f)
- (1 + length (coeffs f) - length (coeffs g)) = (q, r)"
- by (auto simp: g)
- note main = pseudo_divmod_main[OF _ _ _ this, OF g refl le_refl]
- from g have "1 + length (coeffs f) - length (coeffs g) = 1 + degree f - degree g \<or>
- degree f = 0 \<and> 1 + length (coeffs f) - length (coeffs g) = 0 \<and> f = 0"
- by (cases "f = 0"; cases "coeffs g") (auto simp: degree_eq_length_coeffs)
- note main' = main[OF this]
- then show "r = 0 \<or> degree r < degree g" by auto
- show "smult (coeff g (degree g) ^ (Suc (degree f) - degree g)) f = g * q + r"
- by (subst main'[THEN conjunct2, symmetric], simp add: degree_eq_length_coeffs,
- cases "f = 0"; cases "coeffs g", use g in auto)
-qed
-
-definition "pseudo_mod_main lc r d dr n = snd (pseudo_divmod_main lc 0 r d dr n)"
-
-lemma snd_pseudo_divmod_main:
- "snd (pseudo_divmod_main lc q r d dr n) = snd (pseudo_divmod_main lc q' r d dr n)"
- by (induct n arbitrary: q q' lc r d dr) (simp_all add: Let_def)
-
-definition pseudo_mod :: "'a::{comm_ring_1,semiring_1_no_zero_divisors} poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
- where "pseudo_mod f g = snd (pseudo_divmod f g)"
-
-lemma pseudo_mod:
- fixes f g :: "'a::{comm_ring_1,semiring_1_no_zero_divisors} poly"
- defines "r \<equiv> pseudo_mod f g"
- assumes g: "g \<noteq> 0"
- shows "\<exists>a q. a \<noteq> 0 \<and> smult a f = g * q + r" "r = 0 \<or> degree r < degree g"
-proof -
- let ?cg = "coeff g (degree g)"
- let ?cge = "?cg ^ (Suc (degree f) - degree g)"
- define a where "a = ?cge"
- from r_def[unfolded pseudo_mod_def] obtain q where pdm: "pseudo_divmod f g = (q, r)"
- by (cases "pseudo_divmod f g") auto
- from pseudo_divmod[OF g pdm] have id: "smult a f = g * q + r" and "r = 0 \<or> degree r < degree g"
- by (auto simp: a_def)
- show "r = 0 \<or> degree r < degree g" by fact
- from g have "a \<noteq> 0"
- by (auto simp: a_def)
- with id show "\<exists>a q. a \<noteq> 0 \<and> smult a f = g * q + r"
- by auto
-qed
-
-lemma fst_pseudo_divmod_main_as_divide_poly_main:
- assumes d: "d \<noteq> 0"
- defines lc: "lc \<equiv> coeff d (degree d)"
- shows "fst (pseudo_divmod_main lc q r d dr n) =
- divide_poly_main lc (smult (lc^n) q) (smult (lc^n) r) d dr n"
-proof (induct n arbitrary: q r dr)
- case 0
- then show ?case by simp
-next
- case (Suc n)
- note lc0 = leading_coeff_neq_0[OF d, folded lc]
- then have "pseudo_divmod_main lc q r d dr (Suc n) =
- pseudo_divmod_main lc (smult lc q + monom (coeff r dr) n)
- (smult lc r - monom (coeff r dr) n * d) d (dr - 1) n"
- by (simp add: Let_def ac_simps)
- also have "fst \<dots> = divide_poly_main lc
- (smult (lc^n) (smult lc q + monom (coeff r dr) n))
- (smult (lc^n) (smult lc r - monom (coeff r dr) n * d))
- d (dr - 1) n"
- by (simp only: Suc[unfolded divide_poly_main.simps Let_def])
- also have "\<dots> = divide_poly_main lc (smult (lc ^ Suc n) q) (smult (lc ^ Suc n) r) d dr (Suc n)"
- unfolding smult_monom smult_distribs mult_smult_left[symmetric]
- using lc0 by (simp add: Let_def ac_simps)
- finally show ?case .
-qed
-
-
-subsubsection \<open>Division in polynomials over fields\<close>
-
-lemma pseudo_divmod_field:
- fixes g :: "'a::field poly"
- assumes g: "g \<noteq> 0"
- and *: "pseudo_divmod f g = (q,r)"
- defines "c \<equiv> coeff g (degree g) ^ (Suc (degree f) - degree g)"
- shows "f = g * smult (1/c) q + smult (1/c) r"
-proof -
- from leading_coeff_neq_0[OF g] have c0: "c \<noteq> 0"
- by (auto simp: c_def)
- from pseudo_divmod(1)[OF g *, folded c_def] have "smult c f = g * q + r"
- by auto
- also have "smult (1 / c) \<dots> = g * smult (1 / c) q + smult (1 / c) r"
- by (simp add: smult_add_right)
- finally show ?thesis
- using c0 by auto
-qed
-
-lemma divide_poly_main_field:
- fixes d :: "'a::field poly"
- assumes d: "d \<noteq> 0"
- defines lc: "lc \<equiv> coeff d (degree d)"
- shows "divide_poly_main lc q r d dr n =
- fst (pseudo_divmod_main lc (smult ((1 / lc)^n) q) (smult ((1 / lc)^n) r) d dr n)"
- unfolding lc by (subst fst_pseudo_divmod_main_as_divide_poly_main) (auto simp: d power_one_over)
-
-lemma divide_poly_field:
- fixes f g :: "'a::field poly"
- defines "f' \<equiv> smult ((1 / coeff g (degree g)) ^ (Suc (degree f) - degree g)) f"
- shows "f div g = fst (pseudo_divmod f' g)"
-proof (cases "g = 0")
- case True
- show ?thesis
- unfolding divide_poly_def pseudo_divmod_def Let_def f'_def True
- by (simp add: divide_poly_main_0)
-next
- case False
- from leading_coeff_neq_0[OF False] have "degree f' = degree f"
- by (auto simp: f'_def)
- then show ?thesis
- using length_coeffs_degree[of f'] length_coeffs_degree[of f]
- unfolding divide_poly_def pseudo_divmod_def Let_def
- divide_poly_main_field[OF False]
- length_coeffs_degree[OF False]
- f'_def
- by force
-qed
-
-instantiation poly :: ("{semidom_divide_unit_factor,idom_divide}") normalization_semidom
-begin
-
-definition unit_factor_poly :: "'a poly \<Rightarrow> 'a poly"
- where "unit_factor_poly p = [:unit_factor (lead_coeff p):]"
-
-definition normalize_poly :: "'a poly \<Rightarrow> 'a poly"
- where "normalize p = p div [:unit_factor (lead_coeff p):]"
-
-instance
-proof
- fix p :: "'a poly"
- show "unit_factor p * normalize p = p"
- proof (cases "p = 0")
- case True
- then show ?thesis
- by (simp add: unit_factor_poly_def normalize_poly_def)
- next
- case False
- then have "lead_coeff p \<noteq> 0"
- by simp
- then have *: "unit_factor (lead_coeff p) \<noteq> 0"
- using unit_factor_is_unit [of "lead_coeff p"] by auto
- then have "unit_factor (lead_coeff p) dvd 1"
- by (auto intro: unit_factor_is_unit)
- then have **: "unit_factor (lead_coeff p) dvd c" for c
- by (rule dvd_trans) simp
- have ***: "unit_factor (lead_coeff p) * (c div unit_factor (lead_coeff p)) = c" for c
- proof -
- from ** obtain b where "c = unit_factor (lead_coeff p) * b" ..
- with False * show ?thesis by simp
- qed
- have "p div [:unit_factor (lead_coeff p):] =
- map_poly (\<lambda>c. c div unit_factor (lead_coeff p)) p"
- by (simp add: const_poly_dvd_iff div_const_poly_conv_map_poly **)
- then show ?thesis
- by (simp add: normalize_poly_def unit_factor_poly_def
- smult_conv_map_poly map_poly_map_poly o_def ***)
- qed
-next
- fix p :: "'a poly"
- assume "is_unit p"
- then obtain c where p: "p = [:c:]" "c dvd 1"
- by (auto simp: is_unit_poly_iff)
- then show "unit_factor p = p"
- by (simp add: unit_factor_poly_def monom_0 is_unit_unit_factor)
-next
- fix p :: "'a poly"
- assume "p \<noteq> 0"
- then show "is_unit (unit_factor p)"
- by (simp add: unit_factor_poly_def monom_0 is_unit_poly_iff unit_factor_is_unit)
-qed (simp_all add: normalize_poly_def unit_factor_poly_def monom_0 lead_coeff_mult unit_factor_mult)
-
-end
-
-lemma normalize_poly_eq_map_poly: "normalize p = map_poly (\<lambda>x. x div unit_factor (lead_coeff p)) p"
-proof -
- have "[:unit_factor (lead_coeff p):] dvd p"
- by (metis unit_factor_poly_def unit_factor_self)
- then show ?thesis
- by (simp add: normalize_poly_def div_const_poly_conv_map_poly)
-qed
-
-lemma coeff_normalize [simp]:
- "coeff (normalize p) n = coeff p n div unit_factor (lead_coeff p)"
- by (simp add: normalize_poly_eq_map_poly coeff_map_poly)
-
-class field_unit_factor = field + unit_factor +
- assumes unit_factor_field [simp]: "unit_factor = id"
-begin
-
-subclass semidom_divide_unit_factor
-proof
- fix a
- assume "a \<noteq> 0"
- then have "1 = a * inverse a" by simp
- then have "a dvd 1" ..
- then show "unit_factor a dvd 1" by simp
-qed simp_all
-
-end
-
-lemma unit_factor_pCons:
- "unit_factor (pCons a p) = (if p = 0 then [:unit_factor a:] else unit_factor p)"
- by (simp add: unit_factor_poly_def)
-
-lemma normalize_monom [simp]: "normalize (monom a n) = monom (normalize a) n"
- by (cases "a = 0") (simp_all add: map_poly_monom normalize_poly_eq_map_poly degree_monom_eq)
-
-lemma unit_factor_monom [simp]: "unit_factor (monom a n) = [:unit_factor a:]"
- by (cases "a = 0") (simp_all add: unit_factor_poly_def degree_monom_eq)
-
-lemma normalize_const_poly: "normalize [:c:] = [:normalize c:]"
- by (simp add: normalize_poly_eq_map_poly map_poly_pCons)
-
-lemma normalize_smult: "normalize (smult c p) = smult (normalize c) (normalize p)"
-proof -
- have "smult c p = [:c:] * p" by simp
- also have "normalize \<dots> = smult (normalize c) (normalize p)"
- by (subst normalize_mult) (simp add: normalize_const_poly)
- finally show ?thesis .
-qed
-
-lemma smult_content_normalize_primitive_part [simp]:
- "smult (content p) (normalize (primitive_part p)) = normalize p"
-proof -
- have "smult (content p) (normalize (primitive_part p)) =
- normalize ([:content p:] * primitive_part p)"
- by (subst normalize_mult) (simp_all add: normalize_const_poly)
- also have "[:content p:] * primitive_part p = p" by simp
- finally show ?thesis .
-qed
-
-inductive eucl_rel_poly :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<times> 'a poly \<Rightarrow> bool"
- where
- eucl_rel_poly_by0: "eucl_rel_poly x 0 (0, x)"
- | eucl_rel_poly_dividesI: "y \<noteq> 0 \<Longrightarrow> x = q * y \<Longrightarrow> eucl_rel_poly x y (q, 0)"
- | eucl_rel_poly_remainderI:
- "y \<noteq> 0 \<Longrightarrow> degree r < degree y \<Longrightarrow> x = q * y + r \<Longrightarrow> eucl_rel_poly x y (q, r)"
-
-lemma eucl_rel_poly_iff:
- "eucl_rel_poly x y (q, r) \<longleftrightarrow>
- x = q * y + r \<and> (if y = 0 then q = 0 else r = 0 \<or> degree r < degree y)"
- by (auto elim: eucl_rel_poly.cases
- intro: eucl_rel_poly_by0 eucl_rel_poly_dividesI eucl_rel_poly_remainderI)
-
-lemma eucl_rel_poly_0: "eucl_rel_poly 0 y (0, 0)"
- by (simp add: eucl_rel_poly_iff)
-
-lemma eucl_rel_poly_by_0: "eucl_rel_poly x 0 (0, x)"
- by (simp add: eucl_rel_poly_iff)
-
-lemma eucl_rel_poly_pCons:
- assumes rel: "eucl_rel_poly x y (q, r)"
- assumes y: "y \<noteq> 0"
- assumes b: "b = coeff (pCons a r) (degree y) / coeff y (degree y)"
- shows "eucl_rel_poly (pCons a x) y (pCons b q, pCons a r - smult b y)"
- (is "eucl_rel_poly ?x y (?q, ?r)")
-proof -
- from assms have x: "x = q * y + r" and r: "r = 0 \<or> degree r < degree y"
- by (simp_all add: eucl_rel_poly_iff)
- from b x have "?x = ?q * y + ?r" by simp
- moreover
- have "?r = 0 \<or> degree ?r < degree y"
- proof (rule eq_zero_or_degree_less)
- show "degree ?r \<le> degree y"
- proof (rule degree_diff_le)
- from r show "degree (pCons a r) \<le> degree y"
- by auto
- show "degree (smult b y) \<le> degree y"
- by (rule degree_smult_le)
- qed
- from \<open>y \<noteq> 0\<close> show "coeff ?r (degree y) = 0"
- by (simp add: b)
- qed
- ultimately show ?thesis
- unfolding eucl_rel_poly_iff using \<open>y \<noteq> 0\<close> by simp
-qed
-
-lemma eucl_rel_poly_exists: "\<exists>q r. eucl_rel_poly x y (q, r)"
- apply (cases "y = 0")
- apply (fast intro!: eucl_rel_poly_by_0)
- apply (induct x)
- apply (fast intro!: eucl_rel_poly_0)
- apply (fast intro!: eucl_rel_poly_pCons)
- done
-
-lemma eucl_rel_poly_unique:
- assumes 1: "eucl_rel_poly x y (q1, r1)"
- assumes 2: "eucl_rel_poly x y (q2, r2)"
- shows "q1 = q2 \<and> r1 = r2"
-proof (cases "y = 0")
- assume "y = 0"
- with assms show ?thesis
- by (simp add: eucl_rel_poly_iff)
-next
- assume [simp]: "y \<noteq> 0"
- from 1 have q1: "x = q1 * y + r1" and r1: "r1 = 0 \<or> degree r1 < degree y"
- unfolding eucl_rel_poly_iff by simp_all
- from 2 have q2: "x = q2 * y + r2" and r2: "r2 = 0 \<or> degree r2 < degree y"
- unfolding eucl_rel_poly_iff by simp_all
- from q1 q2 have q3: "(q1 - q2) * y = r2 - r1"
- by (simp add: algebra_simps)
- from r1 r2 have r3: "(r2 - r1) = 0 \<or> degree (r2 - r1) < degree y"
- by (auto intro: degree_diff_less)
- show "q1 = q2 \<and> r1 = r2"
- proof (rule classical)
- assume "\<not> ?thesis"
- with q3 have "q1 \<noteq> q2" and "r1 \<noteq> r2" by auto
- with r3 have "degree (r2 - r1) < degree y" by simp
- also have "degree y \<le> degree (q1 - q2) + degree y" by simp
- also from \<open>q1 \<noteq> q2\<close> have "\<dots> = degree ((q1 - q2) * y)"
- by (simp add: degree_mult_eq)
- also from q3 have "\<dots> = degree (r2 - r1)"
- by simp
- finally have "degree (r2 - r1) < degree (r2 - r1)" .
- then show ?thesis by simp
- qed
-qed
-
-lemma eucl_rel_poly_0_iff: "eucl_rel_poly 0 y (q, r) \<longleftrightarrow> q = 0 \<and> r = 0"
- by (auto dest: eucl_rel_poly_unique intro: eucl_rel_poly_0)
-
-lemma eucl_rel_poly_by_0_iff: "eucl_rel_poly x 0 (q, r) \<longleftrightarrow> q = 0 \<and> r = x"
- by (auto dest: eucl_rel_poly_unique intro: eucl_rel_poly_by_0)
-
-lemmas eucl_rel_poly_unique_div = eucl_rel_poly_unique [THEN conjunct1]
-
-lemmas eucl_rel_poly_unique_mod = eucl_rel_poly_unique [THEN conjunct2]
-
-instantiation poly :: (field) semidom_modulo
-begin
-
-definition modulo_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
- where mod_poly_def: "f mod g =
- (if g = 0 then f else pseudo_mod (smult ((1 / lead_coeff g) ^ (Suc (degree f) - degree g)) f) g)"
-
-instance
-proof
- fix x y :: "'a poly"
- show "x div y * y + x mod y = x"
- proof (cases "y = 0")
- case True
- then show ?thesis
- by (simp add: divide_poly_0 mod_poly_def)
- next
- case False
- then have "pseudo_divmod (smult ((1 / lead_coeff y) ^ (Suc (degree x) - degree y)) x) y =
- (x div y, x mod y)"
- by (simp add: divide_poly_field mod_poly_def pseudo_mod_def)
- with False pseudo_divmod [OF False this] show ?thesis
- by (simp add: power_mult_distrib [symmetric] ac_simps)
- qed
-qed
-
-end
-
-lemma eucl_rel_poly: "eucl_rel_poly x y (x div y, x mod y)"
- unfolding eucl_rel_poly_iff
-proof
- show "x = x div y * y + x mod y"
- by (simp add: div_mult_mod_eq)
- show "if y = 0 then x div y = 0 else x mod y = 0 \<or> degree (x mod y) < degree y"
- proof (cases "y = 0")
- case True
- then show ?thesis by auto
- next
- case False
- with pseudo_mod[OF this] show ?thesis
- by (simp add: mod_poly_def)
- qed
-qed
-
-lemma div_poly_eq: "eucl_rel_poly x y (q, r) \<Longrightarrow> x div y = q"
- for x :: "'a::field poly"
- by (rule eucl_rel_poly_unique_div [OF eucl_rel_poly])
-
-lemma mod_poly_eq: "eucl_rel_poly x y (q, r) \<Longrightarrow> x mod y = r"
- for x :: "'a::field poly"
- by (rule eucl_rel_poly_unique_mod [OF eucl_rel_poly])
-
-instance poly :: (field) ring_div
-proof
- fix x y z :: "'a poly"
- assume "y \<noteq> 0"
- with eucl_rel_poly [of x y] have "eucl_rel_poly (x + z * y) y (z + x div y, x mod y)"
- by (simp add: eucl_rel_poly_iff distrib_right)
- then show "(x + z * y) div y = z + x div y"
- by (rule div_poly_eq)
-next
- fix x y z :: "'a poly"
- assume "x \<noteq> 0"
- show "(x * y) div (x * z) = y div z"
- proof (cases "y \<noteq> 0 \<and> z \<noteq> 0")
- have "\<And>x::'a poly. eucl_rel_poly x 0 (0, x)"
- by (rule eucl_rel_poly_by_0)
- then have [simp]: "\<And>x::'a poly. x div 0 = 0"
- by (rule div_poly_eq)
- have "\<And>x::'a poly. eucl_rel_poly 0 x (0, 0)"
- by (rule eucl_rel_poly_0)
- then have [simp]: "\<And>x::'a poly. 0 div x = 0"
- by (rule div_poly_eq)
- case False
- then show ?thesis by auto
- next
- case True
- then have "y \<noteq> 0" and "z \<noteq> 0" by auto
- with \<open>x \<noteq> 0\<close> have "\<And>q r. eucl_rel_poly y z (q, r) \<Longrightarrow> eucl_rel_poly (x * y) (x * z) (q, x * r)"
- by (auto simp: eucl_rel_poly_iff algebra_simps) (rule classical, simp add: degree_mult_eq)
- moreover from eucl_rel_poly have "eucl_rel_poly y z (y div z, y mod z)" .
- ultimately have "eucl_rel_poly (x * y) (x * z) (y div z, x * (y mod z))" .
- then show ?thesis
- by (simp add: div_poly_eq)
- qed
-qed
-
-lemma div_pCons_eq:
- "pCons a p div q =
- (if q = 0 then 0
- else pCons (coeff (pCons a (p mod q)) (degree q) / lead_coeff q) (p div q))"
- using eucl_rel_poly_pCons [OF eucl_rel_poly _ refl, of q a p]
- by (auto intro: div_poly_eq)
-
-lemma mod_pCons_eq:
- "pCons a p mod q =
- (if q = 0 then pCons a p
- else pCons a (p mod q) - smult (coeff (pCons a (p mod q)) (degree q) / lead_coeff q) q)"
- using eucl_rel_poly_pCons [OF eucl_rel_poly _ refl, of q a p]
- by (auto intro: mod_poly_eq)
-
-lemma div_mod_fold_coeffs:
- "(p div q, p mod q) =
- (if q = 0 then (0, p)
- else
- fold_coeffs
- (\<lambda>a (s, r).
- let b = coeff (pCons a r) (degree q) / coeff q (degree q)
- in (pCons b s, pCons a r - smult b q)) p (0, 0))"
- by (rule sym, induct p) (auto simp: div_pCons_eq mod_pCons_eq Let_def)
-
-lemma degree_mod_less: "y \<noteq> 0 \<Longrightarrow> x mod y = 0 \<or> degree (x mod y) < degree y"
- using eucl_rel_poly [of x y] unfolding eucl_rel_poly_iff by simp
-
-lemma degree_mod_less': "b \<noteq> 0 \<Longrightarrow> a mod b \<noteq> 0 \<Longrightarrow> degree (a mod b) < degree b"
- using degree_mod_less[of b a] by auto
-
-lemma div_poly_less:
- fixes x :: "'a::field poly"
- assumes "degree x < degree y"
- shows "x div y = 0"
-proof -
- from assms have "eucl_rel_poly x y (0, x)"
- by (simp add: eucl_rel_poly_iff)
- then show "x div y = 0"
- by (rule div_poly_eq)
-qed
-
-lemma mod_poly_less:
- assumes "degree x < degree y"
- shows "x mod y = x"
-proof -
- from assms have "eucl_rel_poly x y (0, x)"
- by (simp add: eucl_rel_poly_iff)
- then show "x mod y = x"
- by (rule mod_poly_eq)
-qed
-
-lemma eucl_rel_poly_smult_left:
- "eucl_rel_poly x y (q, r) \<Longrightarrow> eucl_rel_poly (smult a x) y (smult a q, smult a r)"
- by (simp add: eucl_rel_poly_iff smult_add_right)
-
-lemma div_smult_left: "(smult a x) div y = smult a (x div y)"
- for x y :: "'a::field poly"
- by (rule div_poly_eq, rule eucl_rel_poly_smult_left, rule eucl_rel_poly)
-
-lemma mod_smult_left: "(smult a x) mod y = smult a (x mod y)"
- by (rule mod_poly_eq, rule eucl_rel_poly_smult_left, rule eucl_rel_poly)
-
-lemma poly_div_minus_left [simp]: "(- x) div y = - (x div y)"
- for x y :: "'a::field poly"
- using div_smult_left [of "- 1::'a"] by simp
-
-lemma poly_mod_minus_left [simp]: "(- x) mod y = - (x mod y)"
- for x y :: "'a::field poly"
- using mod_smult_left [of "- 1::'a"] by simp
-
-lemma eucl_rel_poly_add_left:
- assumes "eucl_rel_poly x y (q, r)"
- assumes "eucl_rel_poly x' y (q', r')"
- shows "eucl_rel_poly (x + x') y (q + q', r + r')"
- using assms unfolding eucl_rel_poly_iff
- by (auto simp: algebra_simps degree_add_less)
-
-lemma poly_div_add_left: "(x + y) div z = x div z + y div z"
- for x y z :: "'a::field poly"
- using eucl_rel_poly_add_left [OF eucl_rel_poly eucl_rel_poly]
- by (rule div_poly_eq)
-
-lemma poly_mod_add_left: "(x + y) mod z = x mod z + y mod z"
- for x y z :: "'a::field poly"
- using eucl_rel_poly_add_left [OF eucl_rel_poly eucl_rel_poly]
- by (rule mod_poly_eq)
-
-lemma poly_div_diff_left: "(x - y) div z = x div z - y div z"
- for x y z :: "'a::field poly"
- by (simp only: diff_conv_add_uminus poly_div_add_left poly_div_minus_left)
-
-lemma poly_mod_diff_left: "(x - y) mod z = x mod z - y mod z"
- for x y z :: "'a::field poly"
- by (simp only: diff_conv_add_uminus poly_mod_add_left poly_mod_minus_left)
-
-lemma eucl_rel_poly_smult_right:
- "a \<noteq> 0 \<Longrightarrow> eucl_rel_poly x y (q, r) \<Longrightarrow> eucl_rel_poly x (smult a y) (smult (inverse a) q, r)"
- by (simp add: eucl_rel_poly_iff)
-
-lemma div_smult_right: "a \<noteq> 0 \<Longrightarrow> x div (smult a y) = smult (inverse a) (x div y)"
- for x y :: "'a::field poly"
- by (rule div_poly_eq, erule eucl_rel_poly_smult_right, rule eucl_rel_poly)
-
-lemma mod_smult_right: "a \<noteq> 0 \<Longrightarrow> x mod (smult a y) = x mod y"
- by (rule mod_poly_eq, erule eucl_rel_poly_smult_right, rule eucl_rel_poly)
-
-lemma poly_div_minus_right [simp]: "x div (- y) = - (x div y)"
- for x y :: "'a::field poly"
- using div_smult_right [of "- 1::'a"] by (simp add: nonzero_inverse_minus_eq)
-
-lemma poly_mod_minus_right [simp]: "x mod (- y) = x mod y"
- for x y :: "'a::field poly"
- using mod_smult_right [of "- 1::'a"] by simp
-
-lemma eucl_rel_poly_mult:
- "eucl_rel_poly x y (q, r) \<Longrightarrow> eucl_rel_poly q z (q', r') \<Longrightarrow>
- eucl_rel_poly x (y * z) (q', y * r' + r)"
- apply (cases "z = 0", simp add: eucl_rel_poly_iff)
- apply (cases "y = 0", simp add: eucl_rel_poly_by_0_iff eucl_rel_poly_0_iff)
- apply (cases "r = 0")
- apply (cases "r' = 0")
- apply (simp add: eucl_rel_poly_iff)
- apply (simp add: eucl_rel_poly_iff field_simps degree_mult_eq)
- apply (cases "r' = 0")
- apply (simp add: eucl_rel_poly_iff degree_mult_eq)
- apply (simp add: eucl_rel_poly_iff field_simps)
- apply (simp add: degree_mult_eq degree_add_less)
- done
-
-lemma poly_div_mult_right: "x div (y * z) = (x div y) div z"
- for x y z :: "'a::field poly"
- by (rule div_poly_eq, rule eucl_rel_poly_mult, (rule eucl_rel_poly)+)
-
-lemma poly_mod_mult_right: "x mod (y * z) = y * (x div y mod z) + x mod y"
- for x y z :: "'a::field poly"
- by (rule mod_poly_eq, rule eucl_rel_poly_mult, (rule eucl_rel_poly)+)
-
-lemma mod_pCons:
- fixes a :: "'a::field"
- and x y :: "'a::field poly"
- assumes y: "y \<noteq> 0"
- defines "b \<equiv> coeff (pCons a (x mod y)) (degree y) / coeff y (degree y)"
- shows "(pCons a x) mod y = pCons a (x mod y) - smult b y"
- unfolding b_def
- by (rule mod_poly_eq, rule eucl_rel_poly_pCons [OF eucl_rel_poly y refl])
-
-
-subsubsection \<open>List-based versions for fast implementation\<close>
-(* Subsection by:
- Sebastiaan Joosten
- René Thiemann
- Akihisa Yamada
- *)
-fun minus_poly_rev_list :: "'a :: group_add list \<Rightarrow> 'a list \<Rightarrow> 'a list"
- where
- "minus_poly_rev_list (x # xs) (y # ys) = (x - y) # (minus_poly_rev_list xs ys)"
- | "minus_poly_rev_list xs [] = xs"
- | "minus_poly_rev_list [] (y # ys) = []"
-
-fun pseudo_divmod_main_list ::
- "'a::comm_ring_1 \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> nat \<Rightarrow> 'a list \<times> 'a list"
- where
- "pseudo_divmod_main_list lc q r d (Suc n) =
- (let
- rr = map (op * lc) r;
- a = hd r;
- qqq = cCons a (map (op * lc) q);
- rrr = tl (if a = 0 then rr else minus_poly_rev_list rr (map (op * a) d))
- in pseudo_divmod_main_list lc qqq rrr d n)"
- | "pseudo_divmod_main_list lc q r d 0 = (q, r)"
-
-fun pseudo_mod_main_list :: "'a::comm_ring_1 \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> nat \<Rightarrow> 'a list"
- where
- "pseudo_mod_main_list lc r d (Suc n) =
- (let
- rr = map (op * lc) r;
- a = hd r;
- rrr = tl (if a = 0 then rr else minus_poly_rev_list rr (map (op * a) d))
- in pseudo_mod_main_list lc rrr d n)"
- | "pseudo_mod_main_list lc r d 0 = r"
-
-
-fun divmod_poly_one_main_list ::
- "'a::comm_ring_1 list \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> nat \<Rightarrow> 'a list \<times> 'a list"
- where
- "divmod_poly_one_main_list q r d (Suc n) =
- (let
- a = hd r;
- qqq = cCons a q;
- rr = tl (if a = 0 then r else minus_poly_rev_list r (map (op * a) d))
- in divmod_poly_one_main_list qqq rr d n)"
- | "divmod_poly_one_main_list q r d 0 = (q, r)"
-
-fun mod_poly_one_main_list :: "'a::comm_ring_1 list \<Rightarrow> 'a list \<Rightarrow> nat \<Rightarrow> 'a list"
- where
- "mod_poly_one_main_list r d (Suc n) =
- (let
- a = hd r;
- rr = tl (if a = 0 then r else minus_poly_rev_list r (map (op * a) d))
- in mod_poly_one_main_list rr d n)"
- | "mod_poly_one_main_list r d 0 = r"
-
-definition pseudo_divmod_list :: "'a::comm_ring_1 list \<Rightarrow> 'a list \<Rightarrow> 'a list \<times> 'a list"
- where "pseudo_divmod_list p q =
- (if q = [] then ([], p)
- else
- (let rq = rev q;
- (qu,re) = pseudo_divmod_main_list (hd rq) [] (rev p) rq (1 + length p - length q)
- in (qu, rev re)))"
-
-definition pseudo_mod_list :: "'a::comm_ring_1 list \<Rightarrow> 'a list \<Rightarrow> 'a list"
- where "pseudo_mod_list p q =
- (if q = [] then p
- else
- (let
- rq = rev q;
- re = pseudo_mod_main_list (hd rq) (rev p) rq (1 + length p - length q)
- in rev re))"
-
-lemma minus_zero_does_nothing: "minus_poly_rev_list x (map (op * 0) y) = x"
- for x :: "'a::ring list"
- by (induct x y rule: minus_poly_rev_list.induct) auto
-
-lemma length_minus_poly_rev_list [simp]: "length (minus_poly_rev_list xs ys) = length xs"
- by (induct xs ys rule: minus_poly_rev_list.induct) auto
-
-lemma if_0_minus_poly_rev_list:
- "(if a = 0 then x else minus_poly_rev_list x (map (op * a) y)) =
- minus_poly_rev_list x (map (op * a) y)"
- for a :: "'a::ring"
- by(cases "a = 0") (simp_all add: minus_zero_does_nothing)
-
-lemma Poly_append: "Poly (a @ b) = Poly a + monom 1 (length a) * Poly b"
- for a :: "'a::comm_semiring_1 list"
- by (induct a) (auto simp: monom_0 monom_Suc)
-
-lemma minus_poly_rev_list: "length p \<ge> length q \<Longrightarrow>
- Poly (rev (minus_poly_rev_list (rev p) (rev q))) =
- Poly p - monom 1 (length p - length q) * Poly q"
- for p q :: "'a :: comm_ring_1 list"
-proof (induct "rev p" "rev q" arbitrary: p q rule: minus_poly_rev_list.induct)
- case (1 x xs y ys)
- then have "length (rev q) \<le> length (rev p)"
- by simp
- from this[folded 1(2,3)] have ys_xs: "length ys \<le> length xs"
- by simp
- then have *: "Poly (rev (minus_poly_rev_list xs ys)) =
- Poly (rev xs) - monom 1 (length xs - length ys) * Poly (rev ys)"
- by (subst "1.hyps"(1)[of "rev xs" "rev ys", unfolded rev_rev_ident length_rev]) auto
- have "Poly p - monom 1 (length p - length q) * Poly q =
- Poly (rev (rev p)) - monom 1 (length (rev (rev p)) - length (rev (rev q))) * Poly (rev (rev q))"
- by simp
- also have "\<dots> =
- Poly (rev (x # xs)) - monom 1 (length (x # xs) - length (y # ys)) * Poly (rev (y # ys))"
- unfolding 1(2,3) by simp
- also from ys_xs have "\<dots> =
- Poly (rev xs) + monom x (length xs) -
- (monom 1 (length xs - length ys) * Poly (rev ys) + monom y (length xs))"
- by (simp add: Poly_append distrib_left mult_monom smult_monom)
- also have "\<dots> = Poly (rev (minus_poly_rev_list xs ys)) + monom (x - y) (length xs)"
- unfolding * diff_monom[symmetric] by simp
- finally show ?case
- by (simp add: 1(2,3)[symmetric] smult_monom Poly_append)
-qed auto
-
-lemma smult_monom_mult: "smult a (monom b n * f) = monom (a * b) n * f"
- using smult_monom [of a _ n] by (metis mult_smult_left)
-
-lemma head_minus_poly_rev_list:
- "length d \<le> length r \<Longrightarrow> d \<noteq> [] \<Longrightarrow>
- hd (minus_poly_rev_list (map (op * (last d)) r) (map (op * (hd r)) (rev d))) = 0"
- for d r :: "'a::comm_ring list"
-proof (induct r)
- case Nil
- then show ?case by simp
-next
- case (Cons a rs)
- then show ?case by (cases "rev d") (simp_all add: ac_simps)
-qed
-
-lemma Poly_map: "Poly (map (op * a) p) = smult a (Poly p)"
-proof (induct p)
- case Nil
- then show ?case by simp
-next
- case (Cons x xs)
- then show ?case by (cases "Poly xs = 0") auto
-qed
-
-lemma last_coeff_is_hd: "xs \<noteq> [] \<Longrightarrow> coeff (Poly xs) (length xs - 1) = hd (rev xs)"
- by (simp_all add: hd_conv_nth rev_nth nth_default_nth nth_append)
-
-lemma pseudo_divmod_main_list_invar:
- assumes leading_nonzero: "last d \<noteq> 0"
- and lc: "last d = lc"
- and "d \<noteq> []"
- and "pseudo_divmod_main_list lc q (rev r) (rev d) n = (q', rev r')"
- and "n = 1 + length r - length d"
- shows "pseudo_divmod_main lc (monom 1 n * Poly q) (Poly r) (Poly d) (length r - 1) n =
- (Poly q', Poly r')"
- using assms(4-)
-proof (induct n arbitrary: r q)
- case (Suc n)
- from Suc.prems have *: "\<not> Suc (length r) \<le> length d"
- by simp
- with \<open>d \<noteq> []\<close> have "r \<noteq> []"
- using Suc_leI length_greater_0_conv list.size(3) by fastforce
- let ?a = "(hd (rev r))"
- let ?rr = "map (op * lc) (rev r)"
- let ?rrr = "rev (tl (minus_poly_rev_list ?rr (map (op * ?a) (rev d))))"
- let ?qq = "cCons ?a (map (op * lc) q)"
- from * Suc(3) have n: "n = (1 + length r - length d - 1)"
- by simp
- from * have rr_val:"(length ?rrr) = (length r - 1)"
- by auto
- with \<open>r \<noteq> []\<close> * have rr_smaller: "(1 + length r - length d - 1) = (1 + length ?rrr - length d)"
- by auto
- from * have id: "Suc (length r) - length d = Suc (length r - length d)"
- by auto
- from Suc.prems *
- have "pseudo_divmod_main_list lc ?qq (rev ?rrr) (rev d) (1 + length r - length d - 1) = (q', rev r')"
- by (simp add: Let_def if_0_minus_poly_rev_list id)
- with n have v: "pseudo_divmod_main_list lc ?qq (rev ?rrr) (rev d) n = (q', rev r')"
- by auto
- from * have sucrr:"Suc (length r) - length d = Suc (length r - length d)"
- using Suc_diff_le not_less_eq_eq by blast
- from Suc(3) \<open>r \<noteq> []\<close> have n_ok : "n = 1 + (length ?rrr) - length d"
- by simp
- have cong: "\<And>x1 x2 x3 x4 y1 y2 y3 y4. x1 = y1 \<Longrightarrow> x2 = y2 \<Longrightarrow> x3 = y3 \<Longrightarrow> x4 = y4 \<Longrightarrow>
- pseudo_divmod_main lc x1 x2 x3 x4 n = pseudo_divmod_main lc y1 y2 y3 y4 n"
- by simp
- have hd_rev: "coeff (Poly r) (length r - Suc 0) = hd (rev r)"
- using last_coeff_is_hd[OF \<open>r \<noteq> []\<close>] by simp
- show ?case
- unfolding Suc.hyps(1)[OF v n_ok, symmetric] pseudo_divmod_main.simps Let_def
- proof (rule cong[OF _ _ refl], goal_cases)
- case 1
- show ?case
- by (simp add: monom_Suc hd_rev[symmetric] smult_monom Poly_map)
- next
- case 2
- show ?case
- proof (subst Poly_on_rev_starting_with_0, goal_cases)
- show "hd (minus_poly_rev_list (map (op * lc) (rev r)) (map (op * (hd (rev r))) (rev d))) = 0"
- by (fold lc, subst head_minus_poly_rev_list, insert * \<open>d \<noteq> []\<close>, auto)
- from * have "length d \<le> length r"
- by simp
- then show "smult lc (Poly r) - monom (coeff (Poly r) (length r - 1)) n * Poly d =
- Poly (rev (minus_poly_rev_list (map (op * lc) (rev r)) (map (op * (hd (rev r))) (rev d))))"
- by (fold rev_map) (auto simp add: n smult_monom_mult Poly_map hd_rev [symmetric]
- minus_poly_rev_list)
- qed
- qed simp
-qed simp
-
-lemma pseudo_divmod_impl [code]:
- "pseudo_divmod f g = map_prod poly_of_list poly_of_list (pseudo_divmod_list (coeffs f) (coeffs g))"
- for f g :: "'a::comm_ring_1 poly"
-proof (cases "g = 0")
- case False
- then have "last (coeffs g) \<noteq> 0"
- and "last (coeffs g) = lead_coeff g"
- and "coeffs g \<noteq> []"
- by (simp_all add: last_coeffs_eq_coeff_degree)
- moreover obtain q r where qr: "pseudo_divmod_main_list
- (last (coeffs g)) (rev [])
- (rev (coeffs f)) (rev (coeffs g))
- (1 + length (coeffs f) -
- length (coeffs g)) = (q, rev (rev r))"
- by force
- ultimately have "(Poly q, Poly (rev r)) = pseudo_divmod_main (lead_coeff g) 0 f g
- (length (coeffs f) - Suc 0) (Suc (length (coeffs f)) - length (coeffs g))"
- by (subst pseudo_divmod_main_list_invar [symmetric]) auto
- moreover have "pseudo_divmod_main_list
- (hd (rev (coeffs g))) []
- (rev (coeffs f)) (rev (coeffs g))
- (1 + length (coeffs f) -
- length (coeffs g)) = (q, r)"
- using qr hd_rev [OF \<open>coeffs g \<noteq> []\<close>] by simp
- ultimately show ?thesis
- by (auto simp: degree_eq_length_coeffs pseudo_divmod_def pseudo_divmod_list_def Let_def)
-next
- case True
- then show ?thesis
- by (auto simp add: pseudo_divmod_def pseudo_divmod_list_def)
-qed
-
-lemma pseudo_mod_main_list:
- "snd (pseudo_divmod_main_list l q xs ys n) = pseudo_mod_main_list l xs ys n"
- by (induct n arbitrary: l q xs ys) (auto simp: Let_def)
-
-lemma pseudo_mod_impl[code]: "pseudo_mod f g = poly_of_list (pseudo_mod_list (coeffs f) (coeffs g))"
-proof -
- have snd_case: "\<And>f g p. snd ((\<lambda>(x,y). (f x, g y)) p) = g (snd p)"
- by auto
- show ?thesis
- unfolding pseudo_mod_def pseudo_divmod_impl pseudo_divmod_list_def
- pseudo_mod_list_def Let_def
- by (simp add: snd_case pseudo_mod_main_list)
-qed
-
-
-subsubsection \<open>Improved Code-Equations for Polynomial (Pseudo) Division\<close>
-
-lemma pdivmod_pdivmodrel: "eucl_rel_poly p q (r, s) \<longleftrightarrow> (p div q, p mod q) = (r, s)"
- by (metis eucl_rel_poly eucl_rel_poly_unique)
-
-lemma pdivmod_via_pseudo_divmod:
- "(f div g, f mod g) =
- (if g = 0 then (0, f)
- else
- let
- ilc = inverse (coeff g (degree g));
- h = smult ilc g;
- (q,r) = pseudo_divmod f h
- in (smult ilc q, r))"
- (is "?l = ?r")
-proof (cases "g = 0")
- case True
- then show ?thesis by simp
-next
- case False
- define lc where "lc = inverse (coeff g (degree g))"
- define h where "h = smult lc g"
- from False have h1: "coeff h (degree h) = 1" and lc: "lc \<noteq> 0"
- by (auto simp: h_def lc_def)
- then have h0: "h \<noteq> 0"
- by auto
- obtain q r where p: "pseudo_divmod f h = (q, r)"
- by force
- from False have id: "?r = (smult lc q, r)"
- by (auto simp: Let_def h_def[symmetric] lc_def[symmetric] p)
- from pseudo_divmod[OF h0 p, unfolded h1]
- have f: "f = h * q + r" and r: "r = 0 \<or> degree r < degree h"
- by auto
- from f r h0 have "eucl_rel_poly f h (q, r)"
- by (auto simp: eucl_rel_poly_iff)
- then have "(f div h, f mod h) = (q, r)"
- by (simp add: pdivmod_pdivmodrel)
- with lc have "(f div g, f mod g) = (smult lc q, r)"
- by (auto simp: h_def div_smult_right[OF lc] mod_smult_right[OF lc])
- with id show ?thesis
- by auto
-qed
-
-lemma pdivmod_via_pseudo_divmod_list:
- "(f div g, f mod g) =
- (let cg = coeffs g in
- if cg = [] then (0, f)
- else
- let
- cf = coeffs f;
- ilc = inverse (last cg);
- ch = map (op * ilc) cg;
- (q, r) = pseudo_divmod_main_list 1 [] (rev cf) (rev ch) (1 + length cf - length cg)
- in (poly_of_list (map (op * ilc) q), poly_of_list (rev r)))"
-proof -
- note d = pdivmod_via_pseudo_divmod pseudo_divmod_impl pseudo_divmod_list_def
- show ?thesis
- proof (cases "g = 0")
- case True
- with d show ?thesis by auto
- next
- case False
- define ilc where "ilc = inverse (coeff g (degree g))"
- from False have ilc: "ilc \<noteq> 0"
- by (auto simp: ilc_def)
- with False have id: "g = 0 \<longleftrightarrow> False" "coeffs g = [] \<longleftrightarrow> False"
- "last (coeffs g) = coeff g (degree g)"
- "coeffs (smult ilc g) = [] \<longleftrightarrow> False"
- by (auto simp: last_coeffs_eq_coeff_degree)
- have id2: "hd (rev (coeffs (smult ilc g))) = 1"
- by (subst hd_rev, insert id ilc, auto simp: coeffs_smult, subst last_map, auto simp: id ilc_def)
- have id3: "length (coeffs (smult ilc g)) = length (coeffs g)"
- "rev (coeffs (smult ilc g)) = rev (map (op * ilc) (coeffs g))"
- unfolding coeffs_smult using ilc by auto
- obtain q r where pair:
- "pseudo_divmod_main_list 1 [] (rev (coeffs f)) (rev (map (op * ilc) (coeffs g)))
- (1 + length (coeffs f) - length (coeffs g)) = (q, r)"
- by force
- show ?thesis
- unfolding d Let_def id if_False ilc_def[symmetric] map_prod_def[symmetric] id2
- unfolding id3 pair map_prod_def split
- by (auto simp: Poly_map)
- qed
-qed
-
-lemma pseudo_divmod_main_list_1: "pseudo_divmod_main_list 1 = divmod_poly_one_main_list"
-proof (intro ext, goal_cases)
- case (1 q r d n)
- have *: "map (op * 1) xs = xs" for xs :: "'a list"
- by (induct xs) auto
- show ?case
- by (induct n arbitrary: q r d) (auto simp: * Let_def)
-qed
-
-fun divide_poly_main_list :: "'a::idom_divide \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> nat \<Rightarrow> 'a list"
- where
- "divide_poly_main_list lc q r d (Suc n) =
- (let
- cr = hd r
- in if cr = 0 then divide_poly_main_list lc (cCons cr q) (tl r) d n else let
- a = cr div lc;
- qq = cCons a q;
- rr = minus_poly_rev_list r (map (op * a) d)
- in if hd rr = 0 then divide_poly_main_list lc qq (tl rr) d n else [])"
- | "divide_poly_main_list lc q r d 0 = q"
-
-lemma divide_poly_main_list_simp [simp]:
- "divide_poly_main_list lc q r d (Suc n) =
- (let
- cr = hd r;
- a = cr div lc;
- qq = cCons a q;
- rr = minus_poly_rev_list r (map (op * a) d)
- in if hd rr = 0 then divide_poly_main_list lc qq (tl rr) d n else [])"
- by (simp add: Let_def minus_zero_does_nothing)
-
-declare divide_poly_main_list.simps(1)[simp del]
-
-definition divide_poly_list :: "'a::idom_divide poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
- where "divide_poly_list f g =
- (let cg = coeffs g in
- if cg = [] then g
- else
- let
- cf = coeffs f;
- cgr = rev cg
- in poly_of_list (divide_poly_main_list (hd cgr) [] (rev cf) cgr (1 + length cf - length cg)))"
-
-lemmas pdivmod_via_divmod_list = pdivmod_via_pseudo_divmod_list[unfolded pseudo_divmod_main_list_1]
-
-lemma mod_poly_one_main_list: "snd (divmod_poly_one_main_list q r d n) = mod_poly_one_main_list r d n"
- by (induct n arbitrary: q r d) (auto simp: Let_def)
-
-lemma mod_poly_code [code]:
- "f mod g =
- (let cg = coeffs g in
- if cg = [] then f
- else
- let
- cf = coeffs f;
- ilc = inverse (last cg);
- ch = map (op * ilc) cg;
- r = mod_poly_one_main_list (rev cf) (rev ch) (1 + length cf - length cg)
- in poly_of_list (rev r))"
- (is "_ = ?rhs")
-proof -
- have "snd (f div g, f mod g) = ?rhs"
- unfolding pdivmod_via_divmod_list Let_def mod_poly_one_main_list [symmetric, of _ _ _ Nil]
- by (auto split: prod.splits)
- then show ?thesis by simp
-qed
-
-definition div_field_poly_impl :: "'a :: field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
- where "div_field_poly_impl f g =
- (let cg = coeffs g in
- if cg = [] then 0
- else
- let
- cf = coeffs f;
- ilc = inverse (last cg);
- ch = map (op * ilc) cg;
- q = fst (divmod_poly_one_main_list [] (rev cf) (rev ch) (1 + length cf - length cg))
- in poly_of_list ((map (op * ilc) q)))"
-
-text \<open>We do not declare the following lemma as code equation, since then polynomial division
- on non-fields will no longer be executable. However, a code-unfold is possible, since
- \<open>div_field_poly_impl\<close> is a bit more efficient than the generic polynomial division.\<close>
-lemma div_field_poly_impl[code_unfold]: "op div = div_field_poly_impl"
-proof (intro ext)
- fix f g :: "'a poly"
- have "fst (f div g, f mod g) = div_field_poly_impl f g"
- unfolding div_field_poly_impl_def pdivmod_via_divmod_list Let_def
- by (auto split: prod.splits)
- then show "f div g = div_field_poly_impl f g"
- by simp
-qed
-
-lemma divide_poly_main_list:
- assumes lc0: "lc \<noteq> 0"
- and lc: "last d = lc"
- and d: "d \<noteq> []"
- and "n = (1 + length r - length d)"
- shows "Poly (divide_poly_main_list lc q (rev r) (rev d) n) =
- divide_poly_main lc (monom 1 n * Poly q) (Poly r) (Poly d) (length r - 1) n"
- using assms(4-)
-proof (induct "n" arbitrary: r q)
- case (Suc n)
- from Suc.prems have ifCond: "\<not> Suc (length r) \<le> length d"
- by simp
- with d have r: "r \<noteq> []"
- using Suc_leI length_greater_0_conv list.size(3) by fastforce
- then obtain rr lcr where r: "r = rr @ [lcr]"
- by (cases r rule: rev_cases) auto
- from d lc obtain dd where d: "d = dd @ [lc]"
- by (cases d rule: rev_cases) auto
- from Suc(2) ifCond have n: "n = 1 + length rr - length d"
- by (auto simp: r)
- from ifCond have len: "length dd \<le> length rr"
- by (simp add: r d)
- show ?case
- proof (cases "lcr div lc * lc = lcr")
- case False
- with r d show ?thesis
- unfolding Suc(2)[symmetric]
- by (auto simp add: Let_def nth_default_append)
- next
- case True
- with r d have id:
- "?thesis \<longleftrightarrow>
- Poly (divide_poly_main_list lc (cCons (lcr div lc) q)
- (rev (rev (minus_poly_rev_list (rev rr) (rev (map (op * (lcr div lc)) dd))))) (rev d) n) =
- divide_poly_main lc
- (monom 1 (Suc n) * Poly q + monom (lcr div lc) n)
- (Poly r - monom (lcr div lc) n * Poly d)
- (Poly d) (length rr - 1) n"
- by (cases r rule: rev_cases; cases "d" rule: rev_cases)
- (auto simp add: Let_def rev_map nth_default_append)
- have cong: "\<And>x1 x2 x3 x4 y1 y2 y3 y4. x1 = y1 \<Longrightarrow> x2 = y2 \<Longrightarrow> x3 = y3 \<Longrightarrow> x4 = y4 \<Longrightarrow>
- divide_poly_main lc x1 x2 x3 x4 n = divide_poly_main lc y1 y2 y3 y4 n"
- by simp
- show ?thesis
- unfolding id
- proof (subst Suc(1), simp add: n,
- subst minus_poly_rev_list, force simp: len, rule cong[OF _ _ refl], goal_cases)
- case 2
- have "monom lcr (length rr) = monom (lcr div lc) (length rr - length dd) * monom lc (length dd)"
- by (simp add: mult_monom len True)
- then show ?case unfolding r d Poly_append n ring_distribs
- by (auto simp: Poly_map smult_monom smult_monom_mult)
- qed (auto simp: len monom_Suc smult_monom)
- qed
-qed simp
-
-lemma divide_poly_list[code]: "f div g = divide_poly_list f g"
-proof -
- note d = divide_poly_def divide_poly_list_def
- show ?thesis
- proof (cases "g = 0")
- case True
- show ?thesis by (auto simp: d True)
- next
- case False
- then obtain cg lcg where cg: "coeffs g = cg @ [lcg]"
- by (cases "coeffs g" rule: rev_cases) auto
- with False have id: "(g = 0) = False" "(cg @ [lcg] = []) = False"
- by auto
- from cg False have lcg: "coeff g (degree g) = lcg"
- using last_coeffs_eq_coeff_degree last_snoc by force
- with False have "lcg \<noteq> 0" by auto
- from cg Poly_coeffs [of g] have ltp: "Poly (cg @ [lcg]) = g"
- by auto
- show ?thesis
- unfolding d cg Let_def id if_False poly_of_list_def
- by (subst divide_poly_main_list, insert False cg \<open>lcg \<noteq> 0\<close>)
- (auto simp: lcg ltp, simp add: degree_eq_length_coeffs)
- qed
-qed
-
-no_notation cCons (infixr "##" 65)
-
-end