src/HOL/Number_Theory/Primes.thy
changeset 65417 fc41a5650fb1
parent 65416 f707dbcf11e3
child 65418 c821f1f3d92d
child 65419 457e4fbed731
--- a/src/HOL/Number_Theory/Primes.thy	Thu Apr 06 08:33:37 2017 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,725 +0,0 @@
-(*  Authors:    Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
-                Thomas M. Rasmussen, Jeremy Avigad, Tobias Nipkow, 
-                Manuel Eberl
-
-
-This file deals with properties of primes. Definitions and lemmas are
-proved uniformly for the natural numbers and integers.
-
-This file combines and revises a number of prior developments.
-
-The original theories "GCD" and "Primes" were by Christophe Tabacznyj
-and Lawrence C. Paulson, based on @{cite davenport92}. They introduced
-gcd, lcm, and prime for the natural numbers.
-
-The original theory "IntPrimes" was by Thomas M. Rasmussen, and
-extended gcd, lcm, primes to the integers. Amine Chaieb provided
-another extension of the notions to the integers, and added a number
-of results to "Primes" and "GCD". IntPrimes also defined and developed
-the congruence relations on the integers. The notion was extended to
-the natural numbers by Chaieb.
-
-Jeremy Avigad combined all of these, made everything uniform for the
-natural numbers and the integers, and added a number of new theorems.
-
-Tobias Nipkow cleaned up a lot.
-
-Florian Haftmann and Manuel Eberl put primality and prime factorisation
-onto an algebraic foundation and thus generalised these concepts to 
-other rings, such as polynomials. (see also the Factorial_Ring theory).
-
-There were also previous formalisations of unique factorisation by 
-Thomas Marthedal Rasmussen, Jeremy Avigad, and David Gray.
-*)
-
-
-section \<open>Primes\<close>
-
-theory Primes
-imports "~~/src/HOL/Binomial" Euclidean_Algorithm
-begin
-
-(* As a simp or intro rule,
-
-     prime p \<Longrightarrow> p > 0
-
-   wreaks havoc here. When the premise includes \<forall>x \<in># M. prime x, it
-   leads to the backchaining
-
-     x > 0
-     prime x
-     x \<in># M   which is, unfortunately,
-     count M x > 0
-*)
-
-declare [[coercion int]]
-declare [[coercion_enabled]]
-
-lemma prime_elem_nat_iff:
-  "prime_elem (n :: nat) \<longleftrightarrow> (1 < n \<and> (\<forall>m. m dvd n \<longrightarrow> m = 1 \<or> m = n))"
-proof safe
-  assume *: "prime_elem n"
-  from * have "n \<noteq> 0" "n \<noteq> 1" by (intro notI, simp del: One_nat_def)+
-  thus "n > 1" by (cases n) simp_all
-  fix m assume m: "m dvd n" "m \<noteq> n"
-  from * \<open>m dvd n\<close> have "n dvd m \<or> is_unit m"
-    by (intro irreducibleD' prime_elem_imp_irreducible)
-  with m show "m = 1" by (auto dest: dvd_antisym)
-next
-  assume "n > 1" "\<forall>m. m dvd n \<longrightarrow> m = 1 \<or> m = n"
-  thus "prime_elem n"
-    by (auto simp: prime_elem_iff_irreducible irreducible_altdef)
-qed
-
-lemma prime_nat_iff_prime_elem: "prime (n :: nat) \<longleftrightarrow> prime_elem n"
-  by (simp add: prime_def)
-
-lemma prime_nat_iff:
-  "prime (n :: nat) \<longleftrightarrow> (1 < n \<and> (\<forall>m. m dvd n \<longrightarrow> m = 1 \<or> m = n))"
-  by (simp add: prime_nat_iff_prime_elem prime_elem_nat_iff)
-
-lemma prime_elem_int_nat_transfer: "prime_elem (n::int) \<longleftrightarrow> prime_elem (nat (abs n))"
-proof
-  assume "prime_elem n"
-  thus "prime_elem (nat (abs n))" by (auto simp: prime_elem_def nat_dvd_iff)
-next
-  assume "prime_elem (nat (abs n))"
-  thus "prime_elem n"
-    by (auto simp: dvd_int_unfold_dvd_nat prime_elem_def abs_mult nat_mult_distrib)
-qed
-
-lemma prime_elem_nat_int_transfer [simp]: "prime_elem (int n) \<longleftrightarrow> prime_elem n"
-  by (auto simp: prime_elem_int_nat_transfer)
-
-lemma prime_nat_int_transfer [simp]: "prime (int n) \<longleftrightarrow> prime n"
-  by (auto simp: prime_elem_int_nat_transfer prime_def)
-
-lemma prime_int_nat_transfer: "prime (n::int) \<longleftrightarrow> n \<ge> 0 \<and> prime (nat n)"
-  by (auto simp: prime_elem_int_nat_transfer prime_def)
-
-lemma prime_int_iff:
-  "prime (n::int) \<longleftrightarrow> (1 < n \<and> (\<forall>m. m \<ge> 0 \<and> m dvd n \<longrightarrow> m = 1 \<or> m = n))"
-proof (intro iffI conjI allI impI; (elim conjE)?)
-  assume *: "prime n"
-  hence irred: "irreducible n" by (simp add: prime_elem_imp_irreducible)
-  from * have "n \<ge> 0" "n \<noteq> 0" "n \<noteq> 1" 
-    by (auto simp: prime_def zabs_def not_less split: if_splits)
-  thus "n > 1" by presburger
-  fix m assume "m dvd n" \<open>m \<ge> 0\<close>
-  with irred have "m dvd 1 \<or> n dvd m" by (auto simp: irreducible_altdef)
-  with \<open>m dvd n\<close> \<open>m \<ge> 0\<close> \<open>n > 1\<close> show "m = 1 \<or> m = n"
-    using associated_iff_dvd[of m n] by auto
-next
-  assume n: "1 < n" "\<forall>m. m \<ge> 0 \<and> m dvd n \<longrightarrow> m = 1 \<or> m = n"
-  hence "nat n > 1" by simp
-  moreover have "\<forall>m. m dvd nat n \<longrightarrow> m = 1 \<or> m = nat n"
-  proof (intro allI impI)
-    fix m assume "m dvd nat n"
-    with \<open>n > 1\<close> have "int m dvd n" by (auto simp: int_dvd_iff)
-    with n(2) have "int m = 1 \<or> int m = n" by auto
-    thus "m = 1 \<or> m = nat n" by auto
-  qed
-  ultimately show "prime n" 
-    unfolding prime_int_nat_transfer prime_nat_iff by auto
-qed
-
-
-lemma prime_nat_not_dvd:
-  assumes "prime p" "p > n" "n \<noteq> (1::nat)"
-  shows   "\<not>n dvd p"
-proof
-  assume "n dvd p"
-  from assms(1) have "irreducible p" by (simp add: prime_elem_imp_irreducible)
-  from irreducibleD'[OF this \<open>n dvd p\<close>] \<open>n dvd p\<close> \<open>p > n\<close> assms show False
-    by (cases "n = 0") (auto dest!: dvd_imp_le)
-qed
-
-lemma prime_int_not_dvd:
-  assumes "prime p" "p > n" "n > (1::int)"
-  shows   "\<not>n dvd p"
-proof
-  assume "n dvd p"
-  from assms(1) have "irreducible p" by (simp add: prime_elem_imp_irreducible)
-  from irreducibleD'[OF this \<open>n dvd p\<close>] \<open>n dvd p\<close> \<open>p > n\<close> assms show False
-    by (auto dest!: zdvd_imp_le)
-qed
-
-lemma prime_odd_nat: "prime p \<Longrightarrow> p > (2::nat) \<Longrightarrow> odd p"
-  by (intro prime_nat_not_dvd) auto
-
-lemma prime_odd_int: "prime p \<Longrightarrow> p > (2::int) \<Longrightarrow> odd p"
-  by (intro prime_int_not_dvd) auto
-
-lemma prime_ge_0_int: "prime p \<Longrightarrow> p \<ge> (0::int)"
-  unfolding prime_int_iff by auto
-
-lemma prime_gt_0_nat: "prime p \<Longrightarrow> p > (0::nat)"
-  unfolding prime_nat_iff by auto
-
-lemma prime_gt_0_int: "prime p \<Longrightarrow> p > (0::int)"
-  unfolding prime_int_iff by auto
-
-lemma prime_ge_1_nat: "prime p \<Longrightarrow> p \<ge> (1::nat)"
-  unfolding prime_nat_iff by auto
-
-lemma prime_ge_Suc_0_nat: "prime p \<Longrightarrow> p \<ge> Suc 0"
-  unfolding prime_nat_iff by auto
-
-lemma prime_ge_1_int: "prime p \<Longrightarrow> p \<ge> (1::int)"
-  unfolding prime_int_iff by auto
-
-lemma prime_gt_1_nat: "prime p \<Longrightarrow> p > (1::nat)"
-  unfolding prime_nat_iff by auto
-
-lemma prime_gt_Suc_0_nat: "prime p \<Longrightarrow> p > Suc 0"
-  unfolding prime_nat_iff by auto
-
-lemma prime_gt_1_int: "prime p \<Longrightarrow> p > (1::int)"
-  unfolding prime_int_iff by auto
-
-lemma prime_ge_2_nat: "prime p \<Longrightarrow> p \<ge> (2::nat)"
-  unfolding prime_nat_iff by auto
-
-lemma prime_ge_2_int: "prime p \<Longrightarrow> p \<ge> (2::int)"
-  unfolding prime_int_iff by auto
-
-lemma prime_int_altdef:
-  "prime p = (1 < p \<and> (\<forall>m::int. m \<ge> 0 \<longrightarrow> m dvd p \<longrightarrow>
-    m = 1 \<or> m = p))"
-  unfolding prime_int_iff by blast
-
-lemma not_prime_eq_prod_nat:
-  assumes "m > 1" "\<not>prime (m::nat)"
-  shows   "\<exists>n k. n = m * k \<and> 1 < m \<and> m < n \<and> 1 < k \<and> k < n"
-  using assms irreducible_altdef[of m]
-  by (auto simp: prime_elem_iff_irreducible prime_def irreducible_altdef)
-
-    
-subsection\<open>Largest exponent of a prime factor\<close>
-text\<open>Possibly duplicates other material, but avoid the complexities of multisets.\<close>
-  
-lemma prime_power_cancel_less:
-  assumes "prime p" and eq: "m * (p ^ k) = m' * (p ^ k')" and less: "k < k'" and "\<not> p dvd m"
-  shows False
-proof -
-  obtain l where l: "k' = k + l" and "l > 0"
-    using less less_imp_add_positive by auto
-  have "m = m * (p ^ k) div (p ^ k)"
-    using \<open>prime p\<close> by simp
-  also have "\<dots> = m' * (p ^ k') div (p ^ k)"
-    using eq by simp
-  also have "\<dots> = m' * (p ^ l) * (p ^ k) div (p ^ k)"
-    by (simp add: l mult.commute mult.left_commute power_add)
-  also have "... = m' * (p ^ l)"
-    using \<open>prime p\<close> by simp
-  finally have "p dvd m"
-    using \<open>l > 0\<close> by simp
-  with assms show False
-    by simp
-qed
-
-lemma prime_power_cancel:
-  assumes "prime p" and eq: "m * (p ^ k) = m' * (p ^ k')" and "\<not> p dvd m" "\<not> p dvd m'"
-  shows "k = k'"
-  using prime_power_cancel_less [OF \<open>prime p\<close>] assms
-  by (metis linorder_neqE_nat)
-
-lemma prime_power_cancel2:
-  assumes "prime p" "m * (p ^ k) = m' * (p ^ k')" "\<not> p dvd m" "\<not> p dvd m'"
-  obtains "m = m'" "k = k'"
-  using prime_power_cancel [OF assms] assms by auto
-
-lemma prime_power_canonical:
-  fixes m::nat
-  assumes "prime p" "m > 0"
-  shows "\<exists>k n. \<not> p dvd n \<and> m = n * p^k"
-using \<open>m > 0\<close>
-proof (induction m rule: less_induct)
-  case (less m)
-  show ?case
-  proof (cases "p dvd m")
-    case True
-    then obtain m' where m': "m = p * m'"
-      using dvdE by blast
-    with \<open>prime p\<close> have "0 < m'" "m' < m"
-      using less.prems prime_nat_iff by auto
-    with m' less show ?thesis
-      by (metis power_Suc mult.left_commute)
-  next
-    case False
-    then show ?thesis
-      by (metis mult.right_neutral power_0)
-  qed
-qed
-
-
-subsubsection \<open>Make prime naively executable\<close>
-
-lemma Suc_0_not_prime_nat [simp]: "~prime (Suc 0)"
-  unfolding One_nat_def [symmetric] by (rule not_prime_1)
-
-lemma prime_nat_iff':
-  "prime (p :: nat) \<longleftrightarrow> p > 1 \<and> (\<forall>n \<in> {2..<p}. ~ n dvd p)"
-proof safe
-  assume "p > 1" and *: "\<forall>n\<in>{2..<p}. \<not>n dvd p"
-  show "prime p" unfolding prime_nat_iff
-  proof (intro conjI allI impI)
-    fix m assume "m dvd p"
-    with \<open>p > 1\<close> have "m \<noteq> 0" by (intro notI) auto
-    hence "m \<ge> 1" by simp
-    moreover from \<open>m dvd p\<close> and * have "m \<notin> {2..<p}" by blast
-    with \<open>m dvd p\<close> and \<open>p > 1\<close> have "m \<le> 1 \<or> m = p" by (auto dest: dvd_imp_le)
-    ultimately show "m = 1 \<or> m = p" by simp
-  qed fact+
-qed (auto simp: prime_nat_iff)
-
-lemma prime_int_iff':
-  "prime (p :: int) \<longleftrightarrow> p > 1 \<and> (\<forall>n \<in> {2..<p}. ~ n dvd p)" (is "?lhs = ?rhs")
-proof
-  assume "?lhs"
-  thus "?rhs"
-      by (auto simp: prime_int_nat_transfer dvd_int_unfold_dvd_nat prime_nat_iff')
-next
-  assume "?rhs"
-  thus "?lhs"
-    by (auto simp: prime_int_nat_transfer zdvd_int prime_nat_iff')
-qed
-
-lemma prime_int_numeral_eq [simp]:
-  "prime (numeral m :: int) \<longleftrightarrow> prime (numeral m :: nat)"
-  by (simp add: prime_int_nat_transfer)
-
-lemma two_is_prime_nat [simp]: "prime (2::nat)"
-  by (simp add: prime_nat_iff')
-
-lemma prime_nat_numeral_eq [simp]:
-  "prime (numeral m :: nat) \<longleftrightarrow>
-    (1::nat) < numeral m \<and>
-    (\<forall>n::nat \<in> set [2..<numeral m]. \<not> n dvd numeral m)"
-  by (simp only: prime_nat_iff' set_upt)  \<comment> \<open>TODO Sieve Of Erathosthenes might speed this up\<close>
-
-
-text\<open>A bit of regression testing:\<close>
-
-lemma "prime(97::nat)" by simp
-lemma "prime(97::int)" by simp
-
-lemma prime_factor_nat: 
-  "n \<noteq> (1::nat) \<Longrightarrow> \<exists>p. prime p \<and> p dvd n"
-  using prime_divisor_exists[of n]
-  by (cases "n = 0") (auto intro: exI[of _ "2::nat"])
-
-
-subsection \<open>Infinitely many primes\<close>
-
-lemma next_prime_bound: "\<exists>p::nat. prime p \<and> n < p \<and> p \<le> fact n + 1"
-proof-
-  have f1: "fact n + 1 \<noteq> (1::nat)" using fact_ge_1 [of n, where 'a=nat] by arith
-  from prime_factor_nat [OF f1]
-  obtain p :: nat where "prime p" and "p dvd fact n + 1" by auto
-  then have "p \<le> fact n + 1" apply (intro dvd_imp_le) apply auto done
-  { assume "p \<le> n"
-    from \<open>prime p\<close> have "p \<ge> 1"
-      by (cases p, simp_all)
-    with \<open>p <= n\<close> have "p dvd fact n"
-      by (intro dvd_fact)
-    with \<open>p dvd fact n + 1\<close> have "p dvd fact n + 1 - fact n"
-      by (rule dvd_diff_nat)
-    then have "p dvd 1" by simp
-    then have "p <= 1" by auto
-    moreover from \<open>prime p\<close> have "p > 1"
-      using prime_nat_iff by blast
-    ultimately have False by auto}
-  then have "n < p" by presburger
-  with \<open>prime p\<close> and \<open>p <= fact n + 1\<close> show ?thesis by auto
-qed
-
-lemma bigger_prime: "\<exists>p. prime p \<and> p > (n::nat)"
-  using next_prime_bound by auto
-
-lemma primes_infinite: "\<not> (finite {(p::nat). prime p})"
-proof
-  assume "finite {(p::nat). prime p}"
-  with Max_ge have "(EX b. (ALL x : {(p::nat). prime p}. x <= b))"
-    by auto
-  then obtain b where "ALL (x::nat). prime x \<longrightarrow> x <= b"
-    by auto
-  with bigger_prime [of b] show False
-    by auto
-qed
-
-subsection\<open>Powers of Primes\<close>
-
-text\<open>Versions for type nat only\<close>
-
-lemma prime_product:
-  fixes p::nat
-  assumes "prime (p * q)"
-  shows "p = 1 \<or> q = 1"
-proof -
-  from assms have
-    "1 < p * q" and P: "\<And>m. m dvd p * q \<Longrightarrow> m = 1 \<or> m = p * q"
-    unfolding prime_nat_iff by auto
-  from \<open>1 < p * q\<close> have "p \<noteq> 0" by (cases p) auto
-  then have Q: "p = p * q \<longleftrightarrow> q = 1" by auto
-  have "p dvd p * q" by simp
-  then have "p = 1 \<or> p = p * q" by (rule P)
-  then show ?thesis by (simp add: Q)
-qed
-
-(* TODO: Generalise? *)
-lemma prime_power_mult_nat:
-  fixes p::nat
-  assumes p: "prime p" and xy: "x * y = p ^ k"
-  shows "\<exists>i j. x = p ^i \<and> y = p^ j"
-using xy
-proof(induct k arbitrary: x y)
-  case 0 thus ?case apply simp by (rule exI[where x="0"], simp)
-next
-  case (Suc k x y)
-  from Suc.prems have pxy: "p dvd x*y" by auto
-  from prime_dvd_multD [OF p pxy] have pxyc: "p dvd x \<or> p dvd y" .
-  from p have p0: "p \<noteq> 0" by - (rule ccontr, simp)
-  {assume px: "p dvd x"
-    then obtain d where d: "x = p*d" unfolding dvd_def by blast
-    from Suc.prems d  have "p*d*y = p^Suc k" by simp
-    hence th: "d*y = p^k" using p0 by simp
-    from Suc.hyps[OF th] obtain i j where ij: "d = p^i" "y = p^j" by blast
-    with d have "x = p^Suc i" by simp
-    with ij(2) have ?case by blast}
-  moreover
-  {assume px: "p dvd y"
-    then obtain d where d: "y = p*d" unfolding dvd_def by blast
-    from Suc.prems d  have "p*d*x = p^Suc k" by (simp add: mult.commute)
-    hence th: "d*x = p^k" using p0 by simp
-    from Suc.hyps[OF th] obtain i j where ij: "d = p^i" "x = p^j" by blast
-    with d have "y = p^Suc i" by simp
-    with ij(2) have ?case by blast}
-  ultimately show ?case  using pxyc by blast
-qed
-
-lemma prime_power_exp_nat:
-  fixes p::nat
-  assumes p: "prime p" and n: "n \<noteq> 0"
-    and xn: "x^n = p^k" shows "\<exists>i. x = p^i"
-  using n xn
-proof(induct n arbitrary: k)
-  case 0 thus ?case by simp
-next
-  case (Suc n k) hence th: "x*x^n = p^k" by simp
-  {assume "n = 0" with Suc have ?case by simp (rule exI[where x="k"], simp)}
-  moreover
-  {assume n: "n \<noteq> 0"
-    from prime_power_mult_nat[OF p th]
-    obtain i j where ij: "x = p^i" "x^n = p^j"by blast
-    from Suc.hyps[OF n ij(2)] have ?case .}
-  ultimately show ?case by blast
-qed
-
-lemma divides_primepow_nat:
-  fixes p::nat
-  assumes p: "prime p"
-  shows "d dvd p^k \<longleftrightarrow> (\<exists> i. i \<le> k \<and> d = p ^i)"
-proof
-  assume H: "d dvd p^k" then obtain e where e: "d*e = p^k"
-    unfolding dvd_def  apply (auto simp add: mult.commute) by blast
-  from prime_power_mult_nat[OF p e] obtain i j where ij: "d = p^i" "e=p^j" by blast
-  from e ij have "p^(i + j) = p^k" by (simp add: power_add)
-  hence "i + j = k" using p prime_gt_1_nat power_inject_exp[of p "i+j" k] by simp
-  hence "i \<le> k" by arith
-  with ij(1) show "\<exists>i\<le>k. d = p ^ i" by blast
-next
-  {fix i assume H: "i \<le> k" "d = p^i"
-    then obtain j where j: "k = i + j"
-      by (metis le_add_diff_inverse)
-    hence "p^k = p^j*d" using H(2) by (simp add: power_add)
-    hence "d dvd p^k" unfolding dvd_def by auto}
-  thus "\<exists>i\<le>k. d = p ^ i \<Longrightarrow> d dvd p ^ k" by blast
-qed
-
-
-subsection \<open>Chinese Remainder Theorem Variants\<close>
-
-lemma bezout_gcd_nat:
-  fixes a::nat shows "\<exists>x y. a * x - b * y = gcd a b \<or> b * x - a * y = gcd a b"
-  using bezout_nat[of a b]
-by (metis bezout_nat diff_add_inverse gcd_add_mult gcd.commute
-  gcd_nat.right_neutral mult_0)
-
-lemma gcd_bezout_sum_nat:
-  fixes a::nat
-  assumes "a * x + b * y = d"
-  shows "gcd a b dvd d"
-proof-
-  let ?g = "gcd a b"
-    have dv: "?g dvd a*x" "?g dvd b * y"
-      by simp_all
-    from dvd_add[OF dv] assms
-    show ?thesis by auto
-qed
-
-
-text \<open>A binary form of the Chinese Remainder Theorem.\<close>
-
-(* TODO: Generalise? *)
-lemma chinese_remainder:
-  fixes a::nat  assumes ab: "coprime a b" and a: "a \<noteq> 0" and b: "b \<noteq> 0"
-  shows "\<exists>x q1 q2. x = u + q1 * a \<and> x = v + q2 * b"
-proof-
-  from bezout_add_strong_nat[OF a, of b] bezout_add_strong_nat[OF b, of a]
-  obtain d1 x1 y1 d2 x2 y2 where dxy1: "d1 dvd a" "d1 dvd b" "a * x1 = b * y1 + d1"
-    and dxy2: "d2 dvd b" "d2 dvd a" "b * x2 = a * y2 + d2" by blast
-  then have d12: "d1 = 1" "d2 =1"
-    by (metis ab coprime_nat)+
-  let ?x = "v * a * x1 + u * b * x2"
-  let ?q1 = "v * x1 + u * y2"
-  let ?q2 = "v * y1 + u * x2"
-  from dxy2(3)[simplified d12] dxy1(3)[simplified d12]
-  have "?x = u + ?q1 * a" "?x = v + ?q2 * b"
-    by algebra+
-  thus ?thesis by blast
-qed
-
-text \<open>Primality\<close>
-
-lemma coprime_bezout_strong:
-  fixes a::nat assumes "coprime a b"  "b \<noteq> 1"
-  shows "\<exists>x y. a * x = b * y + 1"
-by (metis assms bezout_nat gcd_nat.left_neutral)
-
-lemma bezout_prime:
-  assumes p: "prime p" and pa: "\<not> p dvd a"
-  shows "\<exists>x y. a*x = Suc (p*y)"
-proof -
-  have ap: "coprime a p"
-    by (metis gcd.commute p pa prime_imp_coprime)
-  moreover from p have "p \<noteq> 1" by auto
-  ultimately have "\<exists>x y. a * x = p * y + 1"
-    by (rule coprime_bezout_strong)
-  then show ?thesis by simp    
-qed
-(* END TODO *)
-
-
-
-subsection \<open>Multiplicity and primality for natural numbers and integers\<close>
-
-lemma prime_factors_gt_0_nat:
-  "p \<in> prime_factors x \<Longrightarrow> p > (0::nat)"
-  by (simp add: in_prime_factors_imp_prime prime_gt_0_nat)
-
-lemma prime_factors_gt_0_int:
-  "p \<in> prime_factors x \<Longrightarrow> p > (0::int)"
-  by (simp add: in_prime_factors_imp_prime prime_gt_0_int)
-
-lemma prime_factors_ge_0_int [elim]: (* FIXME !? *)
-  fixes n :: int
-  shows "p \<in> prime_factors n \<Longrightarrow> p \<ge> 0"
-  by (drule prime_factors_gt_0_int) simp
-  
-lemma prod_mset_prime_factorization_int:
-  fixes n :: int
-  assumes "n > 0"
-  shows   "prod_mset (prime_factorization n) = n"
-  using assms by (simp add: prod_mset_prime_factorization)
-
-lemma prime_factorization_exists_nat:
-  "n > 0 \<Longrightarrow> (\<exists>M. (\<forall>p::nat \<in> set_mset M. prime p) \<and> n = (\<Prod>i \<in># M. i))"
-  using prime_factorization_exists[of n] by (auto simp: prime_def)
-
-lemma prod_mset_prime_factorization_nat [simp]: 
-  "(n::nat) > 0 \<Longrightarrow> prod_mset (prime_factorization n) = n"
-  by (subst prod_mset_prime_factorization) simp_all
-
-lemma prime_factorization_nat:
-    "n > (0::nat) \<Longrightarrow> n = (\<Prod>p \<in> prime_factors n. p ^ multiplicity p n)"
-  by (simp add: prod_prime_factors)
-
-lemma prime_factorization_int:
-    "n > (0::int) \<Longrightarrow> n = (\<Prod>p \<in> prime_factors n. p ^ multiplicity p n)"
-  by (simp add: prod_prime_factors)
-
-lemma prime_factorization_unique_nat:
-  fixes f :: "nat \<Rightarrow> _"
-  assumes S_eq: "S = {p. 0 < f p}"
-    and "finite S"
-    and S: "\<forall>p\<in>S. prime p" "n = (\<Prod>p\<in>S. p ^ f p)"
-  shows "S = prime_factors n \<and> (\<forall>p. prime p \<longrightarrow> f p = multiplicity p n)"
-  using assms by (intro prime_factorization_unique'') auto
-
-lemma prime_factorization_unique_int:
-  fixes f :: "int \<Rightarrow> _"
-  assumes S_eq: "S = {p. 0 < f p}"
-    and "finite S"
-    and S: "\<forall>p\<in>S. prime p" "abs n = (\<Prod>p\<in>S. p ^ f p)"
-  shows "S = prime_factors n \<and> (\<forall>p. prime p \<longrightarrow> f p = multiplicity p n)"
-  using assms by (intro prime_factorization_unique'') auto
-
-lemma prime_factors_characterization_nat:
-  "S = {p. 0 < f (p::nat)} \<Longrightarrow>
-    finite S \<Longrightarrow> \<forall>p\<in>S. prime p \<Longrightarrow> n = (\<Prod>p\<in>S. p ^ f p) \<Longrightarrow> prime_factors n = S"
-  by (rule prime_factorization_unique_nat [THEN conjunct1, symmetric])
-
-lemma prime_factors_characterization'_nat:
-  "finite {p. 0 < f (p::nat)} \<Longrightarrow>
-    (\<forall>p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow>
-      prime_factors (\<Prod>p | 0 < f p. p ^ f p) = {p. 0 < f p}"
-  by (rule prime_factors_characterization_nat) auto
-
-lemma prime_factors_characterization_int:
-  "S = {p. 0 < f (p::int)} \<Longrightarrow> finite S \<Longrightarrow>
-    \<forall>p\<in>S. prime p \<Longrightarrow> abs n = (\<Prod>p\<in>S. p ^ f p) \<Longrightarrow> prime_factors n = S"
-  by (rule prime_factorization_unique_int [THEN conjunct1, symmetric])
-
-(* TODO Move *)
-lemma abs_prod: "abs (prod f A :: 'a :: linordered_idom) = prod (\<lambda>x. abs (f x)) A"
-  by (cases "finite A", induction A rule: finite_induct) (simp_all add: abs_mult)
-
-lemma primes_characterization'_int [rule_format]:
-  "finite {p. p \<ge> 0 \<and> 0 < f (p::int)} \<Longrightarrow> \<forall>p. 0 < f p \<longrightarrow> prime p \<Longrightarrow>
-      prime_factors (\<Prod>p | p \<ge> 0 \<and> 0 < f p. p ^ f p) = {p. p \<ge> 0 \<and> 0 < f p}"
-  by (rule prime_factors_characterization_int) (auto simp: abs_prod prime_ge_0_int)
-
-lemma multiplicity_characterization_nat:
-  "S = {p. 0 < f (p::nat)} \<Longrightarrow> finite S \<Longrightarrow> \<forall>p\<in>S. prime p \<Longrightarrow> prime p \<Longrightarrow>
-    n = (\<Prod>p\<in>S. p ^ f p) \<Longrightarrow> multiplicity p n = f p"
-  by (frule prime_factorization_unique_nat [of S f n, THEN conjunct2, rule_format, symmetric]) auto
-
-lemma multiplicity_characterization'_nat: "finite {p. 0 < f (p::nat)} \<longrightarrow>
-    (\<forall>p. 0 < f p \<longrightarrow> prime p) \<longrightarrow> prime p \<longrightarrow>
-      multiplicity p (\<Prod>p | 0 < f p. p ^ f p) = f p"
-  by (intro impI, rule multiplicity_characterization_nat) auto
-
-lemma multiplicity_characterization_int: "S = {p. 0 < f (p::int)} \<Longrightarrow>
-    finite S \<Longrightarrow> \<forall>p\<in>S. prime p \<Longrightarrow> prime p \<Longrightarrow> n = (\<Prod>p\<in>S. p ^ f p) \<Longrightarrow> multiplicity p n = f p"
-  by (frule prime_factorization_unique_int [of S f n, THEN conjunct2, rule_format, symmetric]) 
-     (auto simp: abs_prod power_abs prime_ge_0_int intro!: prod.cong)
-
-lemma multiplicity_characterization'_int [rule_format]:
-  "finite {p. p \<ge> 0 \<and> 0 < f (p::int)} \<Longrightarrow>
-    (\<forall>p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow> prime p \<Longrightarrow>
-      multiplicity p (\<Prod>p | p \<ge> 0 \<and> 0 < f p. p ^ f p) = f p"
-  by (rule multiplicity_characterization_int) (auto simp: prime_ge_0_int)
-
-lemma multiplicity_one_nat [simp]: "multiplicity p (Suc 0) = 0"
-  unfolding One_nat_def [symmetric] by (rule multiplicity_one)
-
-lemma multiplicity_eq_nat:
-  fixes x and y::nat
-  assumes "x > 0" "y > 0" "\<And>p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
-  shows "x = y"
-  using multiplicity_eq_imp_eq[of x y] assms by simp
-
-lemma multiplicity_eq_int:
-  fixes x y :: int
-  assumes "x > 0" "y > 0" "\<And>p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
-  shows "x = y"
-  using multiplicity_eq_imp_eq[of x y] assms by simp
-
-lemma multiplicity_prod_prime_powers:
-  assumes "finite S" "\<And>x. x \<in> S \<Longrightarrow> prime x" "prime p"
-  shows   "multiplicity p (\<Prod>p \<in> S. p ^ f p) = (if p \<in> S then f p else 0)"
-proof -
-  define g where "g = (\<lambda>x. if x \<in> S then f x else 0)"
-  define A where "A = Abs_multiset g"
-  have "{x. g x > 0} \<subseteq> S" by (auto simp: g_def)
-  from finite_subset[OF this assms(1)] have [simp]: "g :  multiset"
-    by (simp add: multiset_def)
-  from assms have count_A: "count A x = g x" for x unfolding A_def
-    by simp
-  have set_mset_A: "set_mset A = {x\<in>S. f x > 0}"
-    unfolding set_mset_def count_A by (auto simp: g_def)
-  with assms have prime: "prime x" if "x \<in># A" for x using that by auto
-  from set_mset_A assms have "(\<Prod>p \<in> S. p ^ f p) = (\<Prod>p \<in> S. p ^ g p) "
-    by (intro prod.cong) (auto simp: g_def)
-  also from set_mset_A assms have "\<dots> = (\<Prod>p \<in> set_mset A. p ^ g p)"
-    by (intro prod.mono_neutral_right) (auto simp: g_def set_mset_A)
-  also have "\<dots> = prod_mset A"
-    by (auto simp: prod_mset_multiplicity count_A set_mset_A intro!: prod.cong)
-  also from assms have "multiplicity p \<dots> = sum_mset (image_mset (multiplicity p) A)"
-    by (subst prime_elem_multiplicity_prod_mset_distrib) (auto dest: prime)
-  also from assms have "image_mset (multiplicity p) A = image_mset (\<lambda>x. if x = p then 1 else 0) A"
-    by (intro image_mset_cong) (auto simp: prime_multiplicity_other dest: prime)
-  also have "sum_mset \<dots> = (if p \<in> S then f p else 0)" by (simp add: sum_mset_delta count_A g_def)
-  finally show ?thesis .
-qed
-
-lemma prime_factorization_prod_mset:
-  assumes "0 \<notin># A"
-  shows "prime_factorization (prod_mset A) = \<Union>#(image_mset prime_factorization A)"
-  using assms by (induct A) (auto simp add: prime_factorization_mult)
-
-lemma prime_factors_prod:
-  assumes "finite A" and "0 \<notin> f ` A"
-  shows "prime_factors (prod f A) = UNION A (prime_factors \<circ> f)"
-  using assms by (simp add: prod_unfold_prod_mset prime_factorization_prod_mset)
-
-lemma prime_factors_fact:
-  "prime_factors (fact n) = {p \<in> {2..n}. prime p}" (is "?M = ?N")
-proof (rule set_eqI)
-  fix p
-  { fix m :: nat
-    assume "p \<in> prime_factors m"
-    then have "prime p" and "p dvd m" by auto
-    moreover assume "m > 0" 
-    ultimately have "2 \<le> p" and "p \<le> m"
-      by (auto intro: prime_ge_2_nat dest: dvd_imp_le)
-    moreover assume "m \<le> n"
-    ultimately have "2 \<le> p" and "p \<le> n"
-      by (auto intro: order_trans)
-  } note * = this
-  show "p \<in> ?M \<longleftrightarrow> p \<in> ?N"
-    by (auto simp add: fact_prod prime_factors_prod Suc_le_eq dest!: prime_prime_factors intro: *)
-qed
-
-lemma prime_dvd_fact_iff:
-  assumes "prime p"
-  shows "p dvd fact n \<longleftrightarrow> p \<le> n"
-  using assms
-  by (auto simp add: prime_factorization_subset_iff_dvd [symmetric]
-    prime_factorization_prime prime_factors_fact prime_ge_2_nat)
-
-(* TODO Legacy names *)
-lemmas prime_imp_coprime_nat = prime_imp_coprime[where ?'a = nat]
-lemmas prime_imp_coprime_int = prime_imp_coprime[where ?'a = int]
-lemmas prime_dvd_mult_nat = prime_dvd_mult_iff[where ?'a = nat]
-lemmas prime_dvd_mult_int = prime_dvd_mult_iff[where ?'a = int]
-lemmas prime_dvd_mult_eq_nat = prime_dvd_mult_iff[where ?'a = nat]
-lemmas prime_dvd_mult_eq_int = prime_dvd_mult_iff[where ?'a = int]
-lemmas prime_dvd_power_nat = prime_dvd_power[where ?'a = nat]
-lemmas prime_dvd_power_int = prime_dvd_power[where ?'a = int]
-lemmas prime_dvd_power_nat_iff = prime_dvd_power_iff[where ?'a = nat]
-lemmas prime_dvd_power_int_iff = prime_dvd_power_iff[where ?'a = int]
-lemmas prime_imp_power_coprime_nat = prime_imp_power_coprime[where ?'a = nat]
-lemmas prime_imp_power_coprime_int = prime_imp_power_coprime[where ?'a = int]
-lemmas primes_coprime_nat = primes_coprime[where ?'a = nat]
-lemmas primes_coprime_int = primes_coprime[where ?'a = nat]
-lemmas prime_divprod_pow_nat = prime_elem_divprod_pow[where ?'a = nat]
-lemmas prime_exp = prime_elem_power_iff[where ?'a = nat]
-
-text \<open>Code generation\<close>
-  
-context
-begin
-
-qualified definition prime_nat :: "nat \<Rightarrow> bool"
-  where [simp, code_abbrev]: "prime_nat = prime"
-
-lemma prime_nat_naive [code]:
-  "prime_nat p \<longleftrightarrow> p > 1 \<and> (\<forall>n \<in>{1<..<p}. \<not> n dvd p)"
-  by (auto simp add: prime_nat_iff')
-
-qualified definition prime_int :: "int \<Rightarrow> bool"
-  where [simp, code_abbrev]: "prime_int = prime"
-
-lemma prime_int_naive [code]:
-  "prime_int p \<longleftrightarrow> p > 1 \<and> (\<forall>n \<in>{1<..<p}. \<not> n dvd p)"
-  by (auto simp add: prime_int_iff')
-
-lemma "prime(997::nat)" by eval
-
-lemma "prime(997::int)" by eval
-  
-end
-
-end