--- a/src/HOL/Nat.thy Fri Oct 10 19:55:32 2014 +0200
+++ b/src/HOL/Nat.thy Sun Oct 12 16:31:28 2014 +0200
@@ -1853,6 +1853,48 @@
subsection {* The divides relation on @{typ nat} *}
+instance nat :: semiring_dvd
+proof
+ fix m n q :: nat
+ show "m dvd q * m + n \<longleftrightarrow> m dvd n" (is "?P \<longleftrightarrow> ?Q")
+ proof
+ assume ?Q then show ?P by simp
+ next
+ assume ?P then obtain d where *: "q * m + n = m * d" ..
+ show ?Q
+ proof (cases "n = 0")
+ case True then show ?Q by simp
+ next
+ case False
+ with * have "q * m < m * d"
+ using less_add_eq_less [of 0 n "q * m" "m * d"] by simp
+ then have "q \<le> d" by (auto intro: ccontr simp add: mult.commute [of m])
+ with * [symmetric] have "n = m * (d - q)"
+ by (simp add: diff_mult_distrib2 mult.commute [of m])
+ then show ?Q ..
+ qed
+ qed
+ assume "m dvd n + q" and "m dvd n"
+ show "m dvd q"
+ proof -
+ from `m dvd n` obtain d where "n = m * d" ..
+ moreover from `m dvd n + q` obtain e where "n + q = m * e" ..
+ ultimately have *: "m * d + q = m * e" by simp
+ show "m dvd q"
+ proof (cases "q = 0")
+ case True then show ?thesis by simp
+ next
+ case False
+ with * have "m * d < m * e"
+ using less_add_eq_less [of 0 q "m * d" "m * e"] by simp
+ then have "d \<le> e" by (auto intro: ccontr)
+ with * have "q = m * (e - d)"
+ by (simp add: diff_mult_distrib2)
+ then show ?thesis ..
+ qed
+ qed
+qed
+
lemma dvd_1_left [iff]: "Suc 0 dvd k"
unfolding dvd_def by simp
@@ -1883,17 +1925,6 @@
lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)"
by (drule_tac m = m in dvd_diff_nat, auto)
-lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"
- apply (rule iffI)
- apply (erule_tac [2] dvd_add)
- apply (rule_tac [2] dvd_refl)
- apply (subgoal_tac "n = (n+k) -k")
- prefer 2 apply simp
- apply (erule ssubst)
- apply (erule dvd_diff_nat)
- apply (rule dvd_refl)
- done
-
lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n"
unfolding dvd_def
apply (erule exE)
@@ -1947,18 +1978,6 @@
qed
qed
-lemma dvd_plus_eq_right:
- fixes m n q :: nat
- assumes "m dvd n"
- shows "m dvd n + q \<longleftrightarrow> m dvd q"
- using assms by (auto elim: dvd_plusE)
-
-lemma dvd_plus_eq_left:
- fixes m n q :: nat
- assumes "m dvd q"
- shows "m dvd n + q \<longleftrightarrow> m dvd n"
- using assms by (simp add: dvd_plus_eq_right add.commute [of n])
-
lemma less_eq_dvd_minus:
fixes m n :: nat
assumes "m \<le> n"
@@ -1966,7 +1985,7 @@
proof -
from assms have "n = m + (n - m)" by simp
then obtain q where "n = m + q" ..
- then show ?thesis by (simp add: dvd_reduce add.commute [of m])
+ then show ?thesis by (simp add: add.commute [of m])
qed
lemma dvd_minus_self:
@@ -1991,10 +2010,25 @@
subsection {* Aliases *}
lemma nat_mult_1: "(1::nat) * n = n"
- by (rule mult_1_left)
+ by (fact mult_1_left)
lemma nat_mult_1_right: "n * (1::nat) = n"
- by (rule mult_1_right)
+ by (fact mult_1_right)
+
+lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"
+ by (fact dvd_add_triv_right_iff)
+
+lemma dvd_plus_eq_right:
+ fixes m n q :: nat
+ assumes "m dvd n"
+ shows "m dvd n + q \<longleftrightarrow> m dvd q"
+ using assms by (fact dvd_add_eq_right)
+
+lemma dvd_plus_eq_left:
+ fixes m n q :: nat
+ assumes "m dvd q"
+ shows "m dvd n + q \<longleftrightarrow> m dvd n"
+ using assms by (fact dvd_add_eq_left)
subsection {* Size of a datatype value *}