src/HOL/SetInterval.thy
changeset 33044 fd0a9c794ec1
parent 32960 69916a850301
child 33318 ddd97d9dfbfb
--- a/src/HOL/SetInterval.thy	Tue Oct 20 15:02:48 2009 +0100
+++ b/src/HOL/SetInterval.thy	Tue Oct 20 16:32:51 2009 +0100
@@ -395,6 +395,11 @@
 lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
 by (auto simp add: atLeastAtMost_def)
 
+lemma atLeastLessThan_add_Un: "i \<le> j \<Longrightarrow> {i..<j+k} = {i..<j} \<union> {j..<j+k::nat}"
+  apply (induct k) 
+  apply (simp_all add: atLeastLessThanSuc)   
+  done
+
 subsubsection {* Image *}
 
 lemma image_add_atLeastAtMost:
@@ -522,20 +527,20 @@
 lemma UN_finite_subset: "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> C) \<Longrightarrow> (\<Union>n. A n) \<subseteq> C"
   by (subst UN_UN_finite_eq [symmetric]) blast
 
-lemma UN_finite2_subset:
-  assumes sb: "!!n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n}. B i)"
-  shows "(\<Union>n. A n) \<subseteq> (\<Union>n. B n)"
-proof (rule UN_finite_subset)
-  fix n
-  have "(\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n}. B i)" by (rule sb)
-  also have "...  \<subseteq> (\<Union>n::nat. \<Union>i\<in>{0..<n}. B i)" by blast
-  also have "... = (\<Union>n. B n)" by (simp add: UN_UN_finite_eq) 
-  finally show "(\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>n. B n)" .
-qed
+lemma UN_finite2_subset: 
+     "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n+k}. B i)) \<Longrightarrow> (\<Union>n. A n) \<subseteq> (\<Union>n. B n)"
+  apply (rule UN_finite_subset)
+  apply (subst UN_UN_finite_eq [symmetric, of B]) 
+  apply blast
+  done
 
 lemma UN_finite2_eq:
-  "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) = (\<Union>i\<in>{0..<n}. B i)) \<Longrightarrow> (\<Union>n. A n) = (\<Union>n. B n)"
-  by (iprover intro: subset_antisym UN_finite2_subset elim: equalityE)  
+  "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) = (\<Union>i\<in>{0..<n+k}. B i)) \<Longrightarrow> (\<Union>n. A n) = (\<Union>n. B n)"
+  apply (rule subset_antisym)
+   apply (rule UN_finite2_subset, blast)
+ apply (rule UN_finite2_subset [where k=k])
+ apply (force simp add: atLeastLessThan_add_Un [of 0] UN_Un) 
+ done
 
 
 subsubsection {* Cardinality *}