src/HOL/ex/set.thy
changeset 44276 fe769a0fcc96
parent 44263 971d1be5d5ce
child 44277 bcb696533579
--- a/src/HOL/ex/set.thy	Thu Aug 18 16:52:19 2011 +0900
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,225 +0,0 @@
-(*  Title:      HOL/ex/set.thy
-    Author:     Tobias Nipkow and Lawrence C Paulson
-    Copyright   1991  University of Cambridge
-*)
-
-header {* Set Theory examples: Cantor's Theorem, Schröder-Bernstein Theorem, etc. *}
-
-theory set imports Main begin
-
-text{*
-  These two are cited in Benzmueller and Kohlhase's system description
-  of LEO, CADE-15, 1998 (pages 139-143) as theorems LEO could not
-  prove.
-*}
-
-lemma "(X = Y \<union> Z) =
-    (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))"
-  by blast
-
-lemma "(X = Y \<inter> Z) =
-    (X \<subseteq> Y \<and> X \<subseteq> Z \<and> (\<forall>V. V \<subseteq> Y \<and> V \<subseteq> Z \<longrightarrow> V \<subseteq> X))"
-  by blast
-
-text {*
-  Trivial example of term synthesis: apparently hard for some provers!
-*}
-
-schematic_lemma "a \<noteq> b \<Longrightarrow> a \<in> ?X \<and> b \<notin> ?X"
-  by blast
-
-
-subsection {* Examples for the @{text blast} paper *}
-
-lemma "(\<Union>x \<in> C. f x \<union> g x) = \<Union>(f ` C)  \<union>  \<Union>(g ` C)"
-  -- {* Union-image, called @{text Un_Union_image} in Main HOL *}
-  by blast
-
-lemma "(\<Inter>x \<in> C. f x \<inter> g x) = \<Inter>(f ` C) \<inter> \<Inter>(g ` C)"
-  -- {* Inter-image, called @{text Int_Inter_image} in Main HOL *}
-  by blast
-
-lemma singleton_example_1:
-     "\<And>S::'a set set. \<forall>x \<in> S. \<forall>y \<in> S. x \<subseteq> y \<Longrightarrow> \<exists>z. S \<subseteq> {z}"
-  by blast
-
-lemma singleton_example_2:
-     "\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}"
-  -- {*Variant of the problem above. *}
-  by blast
-
-lemma "\<exists>!x. f (g x) = x \<Longrightarrow> \<exists>!y. g (f y) = y"
-  -- {* A unique fixpoint theorem --- @{text fast}/@{text best}/@{text meson} all fail. *}
-  by metis
-
-
-subsection {* Cantor's Theorem: There is no surjection from a set to its powerset *}
-
-lemma cantor1: "\<not> (\<exists>f:: 'a \<Rightarrow> 'a set. \<forall>S. \<exists>x. f x = S)"
-  -- {* Requires best-first search because it is undirectional. *}
-  by best
-
-schematic_lemma "\<forall>f:: 'a \<Rightarrow> 'a set. \<forall>x. f x \<noteq> ?S f"
-  -- {*This form displays the diagonal term. *}
-  by best
-
-schematic_lemma "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
-  -- {* This form exploits the set constructs. *}
-  by (rule notI, erule rangeE, best)
-
-schematic_lemma "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
-  -- {* Or just this! *}
-  by best
-
-
-subsection {* The Schröder-Berstein Theorem *}
-
-lemma disj_lemma: "- (f ` X) = g ` (-X) \<Longrightarrow> f a = g b \<Longrightarrow> a \<in> X \<Longrightarrow> b \<in> X"
-  by blast
-
-lemma surj_if_then_else:
-  "-(f ` X) = g ` (-X) \<Longrightarrow> surj (\<lambda>z. if z \<in> X then f z else g z)"
-  by (simp add: surj_def) blast
-
-lemma bij_if_then_else:
-  "inj_on f X \<Longrightarrow> inj_on g (-X) \<Longrightarrow> -(f ` X) = g ` (-X) \<Longrightarrow>
-    h = (\<lambda>z. if z \<in> X then f z else g z) \<Longrightarrow> inj h \<and> surj h"
-  apply (unfold inj_on_def)
-  apply (simp add: surj_if_then_else)
-  apply (blast dest: disj_lemma sym)
-  done
-
-lemma decomposition: "\<exists>X. X = - (g ` (- (f ` X)))"
-  apply (rule exI)
-  apply (rule lfp_unfold)
-  apply (rule monoI, blast)
-  done
-
-theorem Schroeder_Bernstein:
-  "inj (f :: 'a \<Rightarrow> 'b) \<Longrightarrow> inj (g :: 'b \<Rightarrow> 'a)
-    \<Longrightarrow> \<exists>h:: 'a \<Rightarrow> 'b. inj h \<and> surj h"
-  apply (rule decomposition [where f=f and g=g, THEN exE])
-  apply (rule_tac x = "(\<lambda>z. if z \<in> x then f z else inv g z)" in exI) 
-    --{*The term above can be synthesized by a sufficiently detailed proof.*}
-  apply (rule bij_if_then_else)
-     apply (rule_tac [4] refl)
-    apply (rule_tac [2] inj_on_inv_into)
-    apply (erule subset_inj_on [OF _ subset_UNIV])
-   apply blast
-  apply (erule ssubst, subst double_complement, erule inv_image_comp [symmetric])
-  done
-
-
-subsection {* A simple party theorem *}
-
-text{* \emph{At any party there are two people who know the same
-number of people}. Provided the party consists of at least two people
-and the knows relation is symmetric. Knowing yourself does not count
---- otherwise knows needs to be reflexive. (From Freek Wiedijk's talk
-at TPHOLs 2007.) *}
-
-lemma equal_number_of_acquaintances:
-assumes "Domain R <= A" and "sym R" and "card A \<ge> 2"
-shows "\<not> inj_on (%a. card(R `` {a} - {a})) A"
-proof -
-  let ?N = "%a. card(R `` {a} - {a})"
-  let ?n = "card A"
-  have "finite A" using `card A \<ge> 2` by(auto intro:ccontr)
-  have 0: "R `` A <= A" using `sym R` `Domain R <= A`
-    unfolding Domain_def sym_def by blast
-  have h: "ALL a:A. R `` {a} <= A" using 0 by blast
-  hence 1: "ALL a:A. finite(R `` {a})" using `finite A`
-    by(blast intro: finite_subset)
-  have sub: "?N ` A <= {0..<?n}"
-  proof -
-    have "ALL a:A. R `` {a} - {a} < A" using h by blast
-    thus ?thesis using psubset_card_mono[OF `finite A`] by auto
-  qed
-  show "~ inj_on ?N A" (is "~ ?I")
-  proof
-    assume ?I
-    hence "?n = card(?N ` A)" by(rule card_image[symmetric])
-    with sub `finite A` have 2[simp]: "?N ` A = {0..<?n}"
-      using subset_card_intvl_is_intvl[of _ 0] by(auto)
-    have "0 : ?N ` A" and "?n - 1 : ?N ` A"  using `card A \<ge> 2` by simp+
-    then obtain a b where ab: "a:A" "b:A" and Na: "?N a = 0" and Nb: "?N b = ?n - 1"
-      by (auto simp del: 2)
-    have "a \<noteq> b" using Na Nb `card A \<ge> 2` by auto
-    have "R `` {a} - {a} = {}" by (metis 1 Na ab card_eq_0_iff finite_Diff)
-    hence "b \<notin> R `` {a}" using `a\<noteq>b` by blast
-    hence "a \<notin> R `` {b}" by (metis Image_singleton_iff assms(2) sym_def)
-    hence 3: "R `` {b} - {b} <= A - {a,b}" using 0 ab by blast
-    have 4: "finite (A - {a,b})" using `finite A` by simp
-    have "?N b <= ?n - 2" using ab `a\<noteq>b` `finite A` card_mono[OF 4 3] by simp
-    then show False using Nb `card A \<ge>  2` by arith
-  qed
-qed
-
-text {*
-  From W. W. Bledsoe and Guohui Feng, SET-VAR. JAR 11 (3), 1993, pages
-  293-314.
-
-  Isabelle can prove the easy examples without any special mechanisms,
-  but it can't prove the hard ones.
-*}
-
-lemma "\<exists>A. (\<forall>x \<in> A. x \<le> (0::int))"
-  -- {* Example 1, page 295. *}
-  by force
-
-lemma "D \<in> F \<Longrightarrow> \<exists>G. \<forall>A \<in> G. \<exists>B \<in> F. A \<subseteq> B"
-  -- {* Example 2. *}
-  by force
-
-lemma "P a \<Longrightarrow> \<exists>A. (\<forall>x \<in> A. P x) \<and> (\<exists>y. y \<in> A)"
-  -- {* Example 3. *}
-  by force
-
-lemma "a < b \<and> b < (c::int) \<Longrightarrow> \<exists>A. a \<notin> A \<and> b \<in> A \<and> c \<notin> A"
-  -- {* Example 4. *}
-  by force
-
-lemma "P (f b) \<Longrightarrow> \<exists>s A. (\<forall>x \<in> A. P x) \<and> f s \<in> A"
-  -- {*Example 5, page 298. *}
-  by force
-
-lemma "P (f b) \<Longrightarrow> \<exists>s A. (\<forall>x \<in> A. P x) \<and> f s \<in> A"
-  -- {* Example 6. *}
-  by force
-
-lemma "\<exists>A. a \<notin> A"
-  -- {* Example 7. *}
-  by force
-
-lemma "(\<forall>u v. u < (0::int) \<longrightarrow> u \<noteq> abs v)
-    \<longrightarrow> (\<exists>A::int set. (\<forall>y. abs y \<notin> A) \<and> -2 \<in> A)"
-  -- {* Example 8 now needs a small hint. *}
-  by (simp add: abs_if, force)
-    -- {* not @{text blast}, which can't simplify @{text "-2 < 0"} *}
-
-text {* Example 9 omitted (requires the reals). *}
-
-text {* The paper has no Example 10! *}
-
-lemma "(\<forall>A. 0 \<in> A \<and> (\<forall>x \<in> A. Suc x \<in> A) \<longrightarrow> n \<in> A) \<and>
-  P 0 \<and> (\<forall>x. P x \<longrightarrow> P (Suc x)) \<longrightarrow> P n"
-  -- {* Example 11: needs a hint. *}
-by(metis nat.induct)
-
-lemma
-  "(\<forall>A. (0, 0) \<in> A \<and> (\<forall>x y. (x, y) \<in> A \<longrightarrow> (Suc x, Suc y) \<in> A) \<longrightarrow> (n, m) \<in> A)
-    \<and> P n \<longrightarrow> P m"
-  -- {* Example 12. *}
-  by auto
-
-lemma
-  "(\<forall>x. (\<exists>u. x = 2 * u) = (\<not> (\<exists>v. Suc x = 2 * v))) \<longrightarrow>
-    (\<exists>A. \<forall>x. (x \<in> A) = (Suc x \<notin> A))"
-  -- {* Example EO1: typo in article, and with the obvious fix it seems
-      to require arithmetic reasoning. *}
-  apply clarify
-  apply (rule_tac x = "{x. \<exists>u. x = 2 * u}" in exI, auto)
-   apply metis+
-  done
-
-end