src/HOL/Set.ML
changeset 923 ff1574a81019
child 1465 5d7a7e439cec
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Set.ML	Fri Mar 03 12:02:25 1995 +0100
@@ -0,0 +1,447 @@
+(*  Title: 	HOL/set
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1991  University of Cambridge
+
+For set.thy.  Set theory for higher-order logic.  A set is simply a predicate.
+*)
+
+open Set;
+
+val [prem] = goal Set.thy "[| P(a) |] ==> a : {x.P(x)}";
+by (rtac (mem_Collect_eq RS ssubst) 1);
+by (rtac prem 1);
+qed "CollectI";
+
+val prems = goal Set.thy "[| a : {x.P(x)} |] ==> P(a)";
+by (resolve_tac (prems RL [mem_Collect_eq  RS subst]) 1);
+qed "CollectD";
+
+val [prem] = goal Set.thy "[| !!x. (x:A) = (x:B) |] ==> A = B";
+by (rtac (prem RS ext RS arg_cong RS box_equals) 1);
+by (rtac Collect_mem_eq 1);
+by (rtac Collect_mem_eq 1);
+qed "set_ext";
+
+val [prem] = goal Set.thy "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}";
+by (rtac (prem RS ext RS arg_cong) 1);
+qed "Collect_cong";
+
+val CollectE = make_elim CollectD;
+
+(*** Bounded quantifiers ***)
+
+val prems = goalw Set.thy [Ball_def]
+    "[| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)";
+by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
+qed "ballI";
+
+val [major,minor] = goalw Set.thy [Ball_def]
+    "[| ! x:A. P(x);  x:A |] ==> P(x)";
+by (rtac (minor RS (major RS spec RS mp)) 1);
+qed "bspec";
+
+val major::prems = goalw Set.thy [Ball_def]
+    "[| ! x:A. P(x);  P(x) ==> Q;  x~:A ==> Q |] ==> Q";
+by (rtac (major RS spec RS impCE) 1);
+by (REPEAT (eresolve_tac prems 1));
+qed "ballE";
+
+(*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*)
+fun ball_tac i = etac ballE i THEN contr_tac (i+1);
+
+val prems = goalw Set.thy [Bex_def]
+    "[| P(x);  x:A |] ==> ? x:A. P(x)";
+by (REPEAT (ares_tac (prems @ [exI,conjI]) 1));
+qed "bexI";
+
+qed_goal "bexCI" Set.thy 
+   "[| ! x:A. ~P(x) ==> P(a);  a:A |] ==> ? x:A.P(x)"
+ (fn prems=>
+  [ (rtac classical 1),
+    (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1))  ]);
+
+val major::prems = goalw Set.thy [Bex_def]
+    "[| ? x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q  |] ==> Q";
+by (rtac (major RS exE) 1);
+by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
+qed "bexE";
+
+(*Trival rewrite rule;   (! x:A.P)=P holds only if A is nonempty!*)
+val prems = goal Set.thy
+    "(! x:A. True) = True";
+by (REPEAT (ares_tac [TrueI,ballI,iffI] 1));
+qed "ball_rew";
+
+(** Congruence rules **)
+
+val prems = goal Set.thy
+    "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
+\    (! x:A. P(x)) = (! x:B. Q(x))";
+by (resolve_tac (prems RL [ssubst]) 1);
+by (REPEAT (ares_tac [ballI,iffI] 1
+     ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1));
+qed "ball_cong";
+
+val prems = goal Set.thy
+    "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
+\    (? x:A. P(x)) = (? x:B. Q(x))";
+by (resolve_tac (prems RL [ssubst]) 1);
+by (REPEAT (etac bexE 1
+     ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1));
+qed "bex_cong";
+
+(*** Subsets ***)
+
+val prems = goalw Set.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B";
+by (REPEAT (ares_tac (prems @ [ballI]) 1));
+qed "subsetI";
+
+(*Rule in Modus Ponens style*)
+val major::prems = goalw Set.thy [subset_def] "[| A <= B;  c:A |] ==> c:B";
+by (rtac (major RS bspec) 1);
+by (resolve_tac prems 1);
+qed "subsetD";
+
+(*The same, with reversed premises for use with etac -- cf rev_mp*)
+qed_goal "rev_subsetD" Set.thy "[| c:A;  A <= B |] ==> c:B"
+ (fn prems=>  [ (REPEAT (resolve_tac (prems@[subsetD]) 1)) ]);
+
+(*Classical elimination rule*)
+val major::prems = goalw Set.thy [subset_def] 
+    "[| A <= B;  c~:A ==> P;  c:B ==> P |] ==> P";
+by (rtac (major RS ballE) 1);
+by (REPEAT (eresolve_tac prems 1));
+qed "subsetCE";
+
+(*Takes assumptions A<=B; c:A and creates the assumption c:B *)
+fun set_mp_tac i = etac subsetCE i  THEN  mp_tac i;
+
+qed_goal "subset_refl" Set.thy "A <= (A::'a set)"
+ (fn _=> [ (REPEAT (ares_tac [subsetI] 1)) ]);
+
+val prems = goal Set.thy "[| A<=B;  B<=C |] ==> A<=(C::'a set)";
+by (cut_facts_tac prems 1);
+by (REPEAT (ares_tac [subsetI] 1 ORELSE set_mp_tac 1));
+qed "subset_trans";
+
+
+(*** Equality ***)
+
+(*Anti-symmetry of the subset relation*)
+val prems = goal Set.thy "[| A <= B;  B <= A |] ==> A = (B::'a set)";
+by (rtac (iffI RS set_ext) 1);
+by (REPEAT (ares_tac (prems RL [subsetD]) 1));
+qed "subset_antisym";
+val equalityI = subset_antisym;
+
+(* Equality rules from ZF set theory -- are they appropriate here? *)
+val prems = goal Set.thy "A = B ==> A<=(B::'a set)";
+by (resolve_tac (prems RL [subst]) 1);
+by (rtac subset_refl 1);
+qed "equalityD1";
+
+val prems = goal Set.thy "A = B ==> B<=(A::'a set)";
+by (resolve_tac (prems RL [subst]) 1);
+by (rtac subset_refl 1);
+qed "equalityD2";
+
+val prems = goal Set.thy
+    "[| A = B;  [| A<=B; B<=(A::'a set) |] ==> P |]  ==>  P";
+by (resolve_tac prems 1);
+by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));
+qed "equalityE";
+
+val major::prems = goal Set.thy
+    "[| A = B;  [| c:A; c:B |] ==> P;  [| c~:A; c~:B |] ==> P |]  ==>  P";
+by (rtac (major RS equalityE) 1);
+by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
+qed "equalityCE";
+
+(*Lemma for creating induction formulae -- for "pattern matching" on p
+  To make the induction hypotheses usable, apply "spec" or "bspec" to
+  put universal quantifiers over the free variables in p. *)
+val prems = goal Set.thy 
+    "[| p:A;  !!z. z:A ==> p=z --> R |] ==> R";
+by (rtac mp 1);
+by (REPEAT (resolve_tac (refl::prems) 1));
+qed "setup_induction";
+
+
+(*** Set complement -- Compl ***)
+
+val prems = goalw Set.thy [Compl_def]
+    "[| c:A ==> False |] ==> c : Compl(A)";
+by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
+qed "ComplI";
+
+(*This form, with negated conclusion, works well with the Classical prover.
+  Negated assumptions behave like formulae on the right side of the notional
+  turnstile...*)
+val major::prems = goalw Set.thy [Compl_def]
+    "[| c : Compl(A) |] ==> c~:A";
+by (rtac (major RS CollectD) 1);
+qed "ComplD";
+
+val ComplE = make_elim ComplD;
+
+
+(*** Binary union -- Un ***)
+
+val prems = goalw Set.thy [Un_def] "c:A ==> c : A Un B";
+by (REPEAT (resolve_tac (prems @ [CollectI,disjI1]) 1));
+qed "UnI1";
+
+val prems = goalw Set.thy [Un_def] "c:B ==> c : A Un B";
+by (REPEAT (resolve_tac (prems @ [CollectI,disjI2]) 1));
+qed "UnI2";
+
+(*Classical introduction rule: no commitment to A vs B*)
+qed_goal "UnCI" Set.thy "(c~:B ==> c:A) ==> c : A Un B"
+ (fn prems=>
+  [ (rtac classical 1),
+    (REPEAT (ares_tac (prems@[UnI1,notI]) 1)),
+    (REPEAT (ares_tac (prems@[UnI2,notE]) 1)) ]);
+
+val major::prems = goalw Set.thy [Un_def]
+    "[| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P";
+by (rtac (major RS CollectD RS disjE) 1);
+by (REPEAT (eresolve_tac prems 1));
+qed "UnE";
+
+
+(*** Binary intersection -- Int ***)
+
+val prems = goalw Set.thy [Int_def]
+    "[| c:A;  c:B |] ==> c : A Int B";
+by (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1));
+qed "IntI";
+
+val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:A";
+by (rtac (major RS CollectD RS conjunct1) 1);
+qed "IntD1";
+
+val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:B";
+by (rtac (major RS CollectD RS conjunct2) 1);
+qed "IntD2";
+
+val [major,minor] = goal Set.thy
+    "[| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P";
+by (rtac minor 1);
+by (rtac (major RS IntD1) 1);
+by (rtac (major RS IntD2) 1);
+qed "IntE";
+
+
+(*** Set difference ***)
+
+qed_goalw "DiffI" Set.thy [set_diff_def]
+    "[| c : A;  c ~: B |] ==> c : A - B"
+ (fn prems=> [ (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1)) ]);
+
+qed_goalw "DiffD1" Set.thy [set_diff_def]
+    "c : A - B ==> c : A"
+ (fn [major]=> [ (rtac (major RS CollectD RS conjunct1) 1) ]);
+
+qed_goalw "DiffD2" Set.thy [set_diff_def]
+    "[| c : A - B;  c : B |] ==> P"
+ (fn [major,minor]=>
+     [rtac (minor RS (major RS CollectD RS conjunct2 RS notE)) 1]);
+
+qed_goal "DiffE" Set.thy
+    "[| c : A - B;  [| c:A; c~:B |] ==> P |] ==> P"
+ (fn prems=>
+  [ (resolve_tac prems 1),
+    (REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ]);
+
+qed_goal "Diff_iff" Set.thy "(c : A-B) = (c:A & c~:B)"
+ (fn _ => [ (fast_tac (HOL_cs addSIs [DiffI] addSEs [DiffE]) 1) ]);
+
+
+(*** The empty set -- {} ***)
+
+qed_goalw "emptyE" Set.thy [empty_def] "a:{} ==> P"
+ (fn [prem] => [rtac (prem RS CollectD RS FalseE) 1]);
+
+qed_goal "empty_subsetI" Set.thy "{} <= A"
+ (fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]);
+
+qed_goal "equals0I" Set.thy "[| !!y. y:A ==> False |] ==> A={}"
+ (fn prems=>
+  [ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1 
+      ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]);
+
+qed_goal "equals0D" Set.thy "[| A={};  a:A |] ==> P"
+ (fn [major,minor]=>
+  [ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]);
+
+
+(*** Augmenting a set -- insert ***)
+
+qed_goalw "insertI1" Set.thy [insert_def] "a : insert a B"
+ (fn _ => [rtac (CollectI RS UnI1) 1, rtac refl 1]);
+
+qed_goalw "insertI2" Set.thy [insert_def] "a : B ==> a : insert b B"
+ (fn [prem]=> [ (rtac (prem RS UnI2) 1) ]);
+
+qed_goalw "insertE" Set.thy [insert_def]
+    "[| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P"
+ (fn major::prems=>
+  [ (rtac (major RS UnE) 1),
+    (REPEAT (eresolve_tac (prems @ [CollectE]) 1)) ]);
+
+qed_goal "insert_iff" Set.thy "a : insert b A = (a=b | a:A)"
+ (fn _ => [fast_tac (HOL_cs addIs [insertI1,insertI2] addSEs [insertE]) 1]);
+
+(*Classical introduction rule*)
+qed_goal "insertCI" Set.thy "(a~:B ==> a=b) ==> a: insert b B"
+ (fn [prem]=>
+  [ (rtac (disjCI RS (insert_iff RS iffD2)) 1),
+    (etac prem 1) ]);
+
+(*** Singletons, using insert ***)
+
+qed_goal "singletonI" Set.thy "a : {a}"
+ (fn _=> [ (rtac insertI1 1) ]);
+
+qed_goal "singletonE" Set.thy "[| a: {b};  a=b ==> P |] ==> P"
+ (fn major::prems=>
+  [ (rtac (major RS insertE) 1),
+    (REPEAT (eresolve_tac (prems @ [emptyE]) 1)) ]);
+
+goalw Set.thy [insert_def] "!!a. b : {a} ==> b=a";
+by(fast_tac (HOL_cs addSEs [emptyE,CollectE,UnE]) 1);
+qed "singletonD";
+
+val singletonE = make_elim singletonD;
+
+val [major] = goal Set.thy "{a}={b} ==> a=b";
+by (rtac (major RS equalityD1 RS subsetD RS singletonD) 1);
+by (rtac singletonI 1);
+qed "singleton_inject";
+
+(*** Unions of families -- UNION x:A. B(x) is Union(B``A)  ***)
+
+(*The order of the premises presupposes that A is rigid; b may be flexible*)
+val prems = goalw Set.thy [UNION_def]
+    "[| a:A;  b: B(a) |] ==> b: (UN x:A. B(x))";
+by (REPEAT (resolve_tac (prems @ [bexI,CollectI]) 1));
+qed "UN_I";
+
+val major::prems = goalw Set.thy [UNION_def]
+    "[| b : (UN x:A. B(x));  !!x.[| x:A;  b: B(x) |] ==> R |] ==> R";
+by (rtac (major RS CollectD RS bexE) 1);
+by (REPEAT (ares_tac prems 1));
+qed "UN_E";
+
+val prems = goal Set.thy
+    "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
+\    (UN x:A. C(x)) = (UN x:B. D(x))";
+by (REPEAT (etac UN_E 1
+     ORELSE ares_tac ([UN_I,equalityI,subsetI] @ 
+		      (prems RL [equalityD1,equalityD2] RL [subsetD])) 1));
+qed "UN_cong";
+
+
+(*** Intersections of families -- INTER x:A. B(x) is Inter(B``A) *)
+
+val prems = goalw Set.thy [INTER_def]
+    "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
+by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
+qed "INT_I";
+
+val major::prems = goalw Set.thy [INTER_def]
+    "[| b : (INT x:A. B(x));  a:A |] ==> b: B(a)";
+by (rtac (major RS CollectD RS bspec) 1);
+by (resolve_tac prems 1);
+qed "INT_D";
+
+(*"Classical" elimination -- by the Excluded Middle on a:A *)
+val major::prems = goalw Set.thy [INTER_def]
+    "[| b : (INT x:A. B(x));  b: B(a) ==> R;  a~:A ==> R |] ==> R";
+by (rtac (major RS CollectD RS ballE) 1);
+by (REPEAT (eresolve_tac prems 1));
+qed "INT_E";
+
+val prems = goal Set.thy
+    "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
+\    (INT x:A. C(x)) = (INT x:B. D(x))";
+by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI]));
+by (REPEAT (dtac INT_D 1
+     ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1));
+qed "INT_cong";
+
+
+(*** Unions over a type; UNION1(B) = Union(range(B)) ***)
+
+(*The order of the premises presupposes that A is rigid; b may be flexible*)
+val prems = goalw Set.thy [UNION1_def]
+    "b: B(x) ==> b: (UN x. B(x))";
+by (REPEAT (resolve_tac (prems @ [TrueI, CollectI RS UN_I]) 1));
+qed "UN1_I";
+
+val major::prems = goalw Set.thy [UNION1_def]
+    "[| b : (UN x. B(x));  !!x. b: B(x) ==> R |] ==> R";
+by (rtac (major RS UN_E) 1);
+by (REPEAT (ares_tac prems 1));
+qed "UN1_E";
+
+
+(*** Intersections over a type; INTER1(B) = Inter(range(B)) *)
+
+val prems = goalw Set.thy [INTER1_def]
+    "(!!x. b: B(x)) ==> b : (INT x. B(x))";
+by (REPEAT (ares_tac (INT_I::prems) 1));
+qed "INT1_I";
+
+val [major] = goalw Set.thy [INTER1_def]
+    "b : (INT x. B(x)) ==> b: B(a)";
+by (rtac (TrueI RS (CollectI RS (major RS INT_D))) 1);
+qed "INT1_D";
+
+(*** Unions ***)
+
+(*The order of the premises presupposes that C is rigid; A may be flexible*)
+val prems = goalw Set.thy [Union_def]
+    "[| X:C;  A:X |] ==> A : Union(C)";
+by (REPEAT (resolve_tac (prems @ [UN_I]) 1));
+qed "UnionI";
+
+val major::prems = goalw Set.thy [Union_def]
+    "[| A : Union(C);  !!X.[| A:X;  X:C |] ==> R |] ==> R";
+by (rtac (major RS UN_E) 1);
+by (REPEAT (ares_tac prems 1));
+qed "UnionE";
+
+(*** Inter ***)
+
+val prems = goalw Set.thy [Inter_def]
+    "[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
+by (REPEAT (ares_tac ([INT_I] @ prems) 1));
+qed "InterI";
+
+(*A "destruct" rule -- every X in C contains A as an element, but
+  A:X can hold when X:C does not!  This rule is analogous to "spec". *)
+val major::prems = goalw Set.thy [Inter_def]
+    "[| A : Inter(C);  X:C |] ==> A:X";
+by (rtac (major RS INT_D) 1);
+by (resolve_tac prems 1);
+qed "InterD";
+
+(*"Classical" elimination rule -- does not require proving X:C *)
+val major::prems = goalw Set.thy [Inter_def]
+    "[| A : Inter(C);  A:X ==> R;  X~:C ==> R |] ==> R";
+by (rtac (major RS INT_E) 1);
+by (REPEAT (eresolve_tac prems 1));
+qed "InterE";
+
+(*** Powerset ***)
+
+qed_goalw "PowI" Set.thy [Pow_def] "!!A B. A <= B ==> A : Pow(B)"
+ (fn _ => [ (etac CollectI 1) ]);
+
+qed_goalw "PowD" Set.thy [Pow_def] "!!A B. A : Pow(B)  ==>  A<=B"
+ (fn _=> [ (etac CollectD 1) ]);
+
+val Pow_bottom = empty_subsetI RS PowI;        (* {}: Pow(B) *)
+val Pow_top = subset_refl RS PowI;             (* A : Pow(A) *)