src/HOL/intr_elim.ML
changeset 923 ff1574a81019
child 1191 d7e0c280f261
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/intr_elim.ML	Fri Mar 03 12:02:25 1995 +0100
@@ -0,0 +1,141 @@
+(*  Title: 	HOL/intr_elim.ML
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1994  University of Cambridge
+
+Introduction/elimination rule module -- for Inductive/Coinductive Definitions
+*)
+
+signature INDUCTIVE_ARG =	(** Description of a (co)inductive def **)
+  sig
+  val thy        : theory               (*new theory with inductive defs*)
+  val monos      : thm list		(*monotonicity of each M operator*)
+  val con_defs   : thm list		(*definitions of the constructors*)
+  end;
+
+(*internal items*)
+signature INDUCTIVE_I =
+  sig
+  val rec_tms    : term list		(*the recursive sets*)
+  val intr_tms   : term list		(*terms for the introduction rules*)
+  end;
+
+signature INTR_ELIM =
+  sig
+  val thy        : theory               (*copy of input theory*)
+  val defs	 : thm list		(*definitions made in thy*)
+  val mono	 : thm			(*monotonicity for the lfp definition*)
+  val unfold     : thm			(*fixed-point equation*)
+  val intrs      : thm list		(*introduction rules*)
+  val elim       : thm			(*case analysis theorem*)
+  val raw_induct : thm			(*raw induction rule from Fp.induct*)
+  val mk_cases : thm list -> string -> thm	(*generates case theorems*)
+  val rec_names  : string list		(*names of recursive sets*)
+  end;
+
+(*prove intr/elim rules for a fixedpoint definition*)
+functor Intr_elim_Fun
+    (structure Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end  
+     and Fp: FP) : INTR_ELIM =
+struct
+open Logic Inductive Ind_Syntax;
+
+val rec_names = map (#1 o dest_Const o head_of) rec_tms;
+val big_rec_name = space_implode "_" rec_names;
+
+val _ = deny (big_rec_name  mem  map ! (stamps_of_thy thy))
+             ("Definition " ^ big_rec_name ^ 
+	      " would clash with the theory of the same name!");
+
+(*fetch fp definitions from the theory*)
+val big_rec_def::part_rec_defs = 
+  map (get_def thy)
+      (case rec_names of [_] => rec_names | _ => big_rec_name::rec_names);
+
+
+val sign = sign_of thy;
+
+(********)
+val _ = writeln "  Proving monotonicity...";
+
+val Const("==",_) $ _ $ (Const(_,fpT) $ fp_abs) =
+    big_rec_def |> rep_thm |> #prop |> unvarify;
+
+(*For the type of the argument of mono*)
+val [monoT] = binder_types fpT;
+
+val mono = 
+    prove_goalw_cterm [] 
+      (cterm_of sign (mk_Trueprop (Const("mono", monoT-->boolT) $ fp_abs)))
+      (fn _ =>
+       [rtac monoI 1,
+	REPEAT (ares_tac (basic_monos @ monos) 1)]);
+
+val unfold = standard (mono RS (big_rec_def RS Fp.Tarski));
+
+(********)
+val _ = writeln "  Proving the introduction rules...";
+
+fun intro_tacsf disjIn prems = 
+  [(*insert prems and underlying sets*)
+   cut_facts_tac prems 1,
+   rtac (unfold RS ssubst) 1,
+   REPEAT (resolve_tac [Part_eqI,CollectI] 1),
+   (*Now 1-2 subgoals: the disjunction, perhaps equality.*)
+   rtac disjIn 1,
+   (*Not ares_tac, since refl must be tried before any equality assumptions;
+     backtracking may occur if the premises have extra variables!*)
+   DEPTH_SOLVE_1 (resolve_tac [refl,exI,conjI] 1 ORELSE assume_tac 1)];
+
+(*combines disjI1 and disjI2 to access the corresponding nested disjunct...*)
+val mk_disj_rls = 
+    let fun f rl = rl RS disjI1
+	and g rl = rl RS disjI2
+    in  accesses_bal(f, g, asm_rl)  end;
+
+val intrs = map (uncurry (prove_goalw_cterm part_rec_defs))
+            (map (cterm_of sign) intr_tms ~~ 
+	     map intro_tacsf (mk_disj_rls(length intr_tms)));
+
+(********)
+val _ = writeln "  Proving the elimination rule...";
+
+(*Includes rules for Suc and Pair since they are common constructions*)
+val elim_rls = [asm_rl, FalseE, Suc_neq_Zero, Zero_neq_Suc,
+		make_elim Suc_inject, 
+		refl_thin, conjE, exE, disjE];
+
+(*Breaks down logical connectives in the monotonic function*)
+val basic_elim_tac =
+    REPEAT (SOMEGOAL (eresolve_tac (elim_rls@sumprod_free_SEs)
+	      ORELSE' bound_hyp_subst_tac))
+    THEN prune_params_tac;
+
+val elim = rule_by_tactic basic_elim_tac (unfold RS equals_CollectD);
+
+(*Applies freeness of the given constructors, which *must* be unfolded by
+  the given defs.  Cannot simply use the local con_defs because con_defs=[] 
+  for inference systems.
+fun con_elim_tac defs =
+    rewrite_goals_tac defs THEN basic_elim_tac THEN fold_tac defs;
+ *)
+fun con_elim_tac simps =
+  let val elim_tac = REPEAT o (eresolve_tac (elim_rls@sumprod_free_SEs))
+  in ALLGOALS(EVERY'[elim_tac,
+                     asm_full_simp_tac (nat_ss addsimps simps),
+                     elim_tac,
+                     REPEAT o bound_hyp_subst_tac])
+     THEN prune_params_tac
+  end;
+
+
+(*String s should have the form t:Si where Si is an inductive set*)
+fun mk_cases defs s = 
+    rule_by_tactic (con_elim_tac defs)
+      (assume_read thy s  RS  elim);
+
+val defs = big_rec_def::part_rec_defs;
+
+val raw_induct = standard ([big_rec_def, mono] MRS Fp.induct);
+end;
+