src/HOL/Nitpick_Examples/minipick.ML
changeset 69597 ff784d5a5bfb
parent 59970 e9f73d87d904
child 72190 8009c4b5db5e
--- a/src/HOL/Nitpick_Examples/minipick.ML	Sat Jan 05 17:00:43 2019 +0100
+++ b/src/HOL/Nitpick_Examples/minipick.ML	Sat Jan 05 17:24:33 2019 +0100
@@ -24,27 +24,27 @@
   S_Rep |
   R_Rep of bool
 
-fun check_type ctxt raw_infinite (Type (@{type_name fun}, Ts)) =
+fun check_type ctxt raw_infinite (Type (\<^type_name>\<open>fun\<close>, Ts)) =
     List.app (check_type ctxt raw_infinite) Ts
-  | check_type ctxt raw_infinite (Type (@{type_name prod}, Ts)) =
+  | check_type ctxt raw_infinite (Type (\<^type_name>\<open>prod\<close>, Ts)) =
     List.app (check_type ctxt raw_infinite) Ts
-  | check_type _ _ @{typ bool} = ()
-  | check_type _ _ (TFree (_, @{sort "{}"})) = ()
-  | check_type _ _ (TFree (_, @{sort HOL.type})) = ()
+  | check_type _ _ \<^typ>\<open>bool\<close> = ()
+  | check_type _ _ (TFree (_, \<^sort>\<open>{}\<close>)) = ()
+  | check_type _ _ (TFree (_, \<^sort>\<open>HOL.type\<close>)) = ()
   | check_type ctxt raw_infinite T =
     if raw_infinite T then
       ()
     else
       error ("Not supported: Type " ^ quote (Syntax.string_of_typ ctxt T) ^ ".")
 
-fun atom_schema_of S_Rep card (Type (@{type_name fun}, [T1, T2])) =
+fun atom_schema_of S_Rep card (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
     replicate_list (card T1) (atom_schema_of S_Rep card T2)
   | atom_schema_of (R_Rep true) card
-                   (Type (@{type_name fun}, [T1, @{typ bool}])) =
+                   (Type (\<^type_name>\<open>fun\<close>, [T1, \<^typ>\<open>bool\<close>])) =
     atom_schema_of S_Rep card T1
-  | atom_schema_of (rep as R_Rep _) card (Type (@{type_name fun}, [T1, T2])) =
+  | atom_schema_of (rep as R_Rep _) card (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
     atom_schema_of S_Rep card T1 @ atom_schema_of rep card T2
-  | atom_schema_of _ card (Type (@{type_name prod}, Ts)) =
+  | atom_schema_of _ card (Type (\<^type_name>\<open>prod\<close>, Ts)) =
     maps (atom_schema_of S_Rep card) Ts
   | atom_schema_of _ card T = [card T]
 val arity_of = length ooo atom_schema_of
@@ -79,7 +79,7 @@
     fun S_rep_from_F NONE f = RelIf (f, true_atom, false_atom)
       | S_rep_from_F (SOME true) f = RelIf (f, true_atom, None)
       | S_rep_from_F (SOME false) f = RelIf (Not f, false_atom, None)
-    fun R_rep_from_S_rep (Type (@{type_name fun}, [T1, T2])) r =
+    fun R_rep_from_S_rep (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) r =
         if total andalso T2 = bool_T then
           let
             val jss = atom_schema_of S_Rep card T1 |> map (rpair 0)
@@ -109,12 +109,12 @@
             |> foldl1 Union
           end
       | R_rep_from_S_rep _ r = r
-    fun S_rep_from_R_rep Ts (T as Type (@{type_name fun}, _)) r =
+    fun S_rep_from_R_rep Ts (T as Type (\<^type_name>\<open>fun\<close>, _)) r =
         Comprehension (decls_for S_Rep card Ts T,
             RelEq (R_rep_from_S_rep T
                        (rel_expr_for_bound_var card S_Rep (T :: Ts) 0), r))
       | S_rep_from_R_rep _ _ r = r
-    fun partial_eq pos Ts (Type (@{type_name fun}, [T1, T2])) t1 t2 =
+    fun partial_eq pos Ts (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) t1 t2 =
         HOLogic.mk_all ("x", T1,
                         HOLogic.eq_const T2 $ (incr_boundvars 1 t1 $ Bound 0)
                         $ (incr_boundvars 1 t2 $ Bound 0))
@@ -127,26 +127,26 @@
                    |> (if pos then Some o Intersect else Lone o Union)
     and to_F pos Ts t =
       (case t of
-         @{const Not} $ t1 => Not (to_F (Option.map not pos) Ts t1)
-       | @{const False} => False
-       | @{const True} => True
-       | Const (@{const_name All}, _) $ Abs (_, T, t') =>
+         \<^const>\<open>Not\<close> $ t1 => Not (to_F (Option.map not pos) Ts t1)
+       | \<^const>\<open>False\<close> => False
+       | \<^const>\<open>True\<close> => True
+       | Const (\<^const_name>\<open>All\<close>, _) $ Abs (_, T, t') =>
          if pos = SOME true andalso not (complete T) then False
          else All (decls_for S_Rep card Ts T, to_F pos (T :: Ts) t')
-       | (t0 as Const (@{const_name All}, _)) $ t1 =>
+       | (t0 as Const (\<^const_name>\<open>All\<close>, _)) $ t1 =>
          to_F pos Ts (t0 $ eta_expand Ts t1 1)
-       | Const (@{const_name Ex}, _) $ Abs (_, T, t') =>
+       | Const (\<^const_name>\<open>Ex\<close>, _) $ Abs (_, T, t') =>
          if pos = SOME false andalso not (complete T) then True
          else Exist (decls_for S_Rep card Ts T, to_F pos (T :: Ts) t')
-       | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
+       | (t0 as Const (\<^const_name>\<open>Ex\<close>, _)) $ t1 =>
          to_F pos Ts (t0 $ eta_expand Ts t1 1)
-       | Const (@{const_name HOL.eq}, Type (_, [T, _])) $ t1 $ t2 =>
+       | Const (\<^const_name>\<open>HOL.eq\<close>, Type (_, [T, _])) $ t1 $ t2 =>
          (case pos of
             NONE => RelEq (to_R_rep Ts t1, to_R_rep Ts t2)
           | SOME pos => partial_eq pos Ts T t1 t2)
-       | Const (@{const_name ord_class.less_eq},
-                Type (@{type_name fun},
-                      [Type (@{type_name fun}, [T', @{typ bool}]), _]))
+       | Const (\<^const_name>\<open>ord_class.less_eq\<close>,
+                Type (\<^type_name>\<open>fun\<close>,
+                      [Type (\<^type_name>\<open>fun\<close>, [T', \<^typ>\<open>bool\<close>]), _]))
          $ t1 $ t2 =>
          (case pos of
             NONE => Subset (to_R_rep Ts t1, to_R_rep Ts t2)
@@ -158,11 +158,11 @@
             Subset (Join (to_R_rep Ts t1, true_atom),
                     Difference (atom_seq_product_of S_Rep card T',
                                 Join (to_R_rep Ts t2, false_atom))))
-       | @{const HOL.conj} $ t1 $ t2 => And (to_F pos Ts t1, to_F pos Ts t2)
-       | @{const HOL.disj} $ t1 $ t2 => Or (to_F pos Ts t1, to_F pos Ts t2)
-       | @{const HOL.implies} $ t1 $ t2 =>
+       | \<^const>\<open>HOL.conj\<close> $ t1 $ t2 => And (to_F pos Ts t1, to_F pos Ts t2)
+       | \<^const>\<open>HOL.disj\<close> $ t1 $ t2 => Or (to_F pos Ts t1, to_F pos Ts t2)
+       | \<^const>\<open>HOL.implies\<close> $ t1 $ t2 =>
          Implies (to_F (Option.map not pos) Ts t1, to_F pos Ts t2)
-       | Const (@{const_name Set.member}, _) $ t1 $ t2 => to_F pos Ts (t2 $ t1)
+       | Const (\<^const_name>\<open>Set.member\<close>, _) $ t1 $ t2 => to_F pos Ts (t2 $ t1)
        | t1 $ t2 =>
          (case pos of
             NONE => Subset (to_S_rep Ts t2, to_R_rep Ts t1)
@@ -181,22 +181,22 @@
       handle SAME () => F_from_S_rep pos (to_R_rep Ts t)
     and to_S_rep Ts t =
       case t of
-        Const (@{const_name Pair}, _) $ t1 $ t2 =>
+        Const (\<^const_name>\<open>Pair\<close>, _) $ t1 $ t2 =>
         Product (to_S_rep Ts t1, to_S_rep Ts t2)
-      | Const (@{const_name Pair}, _) $ _ => to_S_rep Ts (eta_expand Ts t 1)
-      | Const (@{const_name Pair}, _) => to_S_rep Ts (eta_expand Ts t 2)
-      | Const (@{const_name fst}, _) $ t1 =>
+      | Const (\<^const_name>\<open>Pair\<close>, _) $ _ => to_S_rep Ts (eta_expand Ts t 1)
+      | Const (\<^const_name>\<open>Pair\<close>, _) => to_S_rep Ts (eta_expand Ts t 2)
+      | Const (\<^const_name>\<open>fst\<close>, _) $ t1 =>
         let val fst_arity = arity_of S_Rep card (fastype_of1 (Ts, t)) in
           Project (to_S_rep Ts t1, num_seq 0 fst_arity)
         end
-      | Const (@{const_name fst}, _) => to_S_rep Ts (eta_expand Ts t 1)
-      | Const (@{const_name snd}, _) $ t1 =>
+      | Const (\<^const_name>\<open>fst\<close>, _) => to_S_rep Ts (eta_expand Ts t 1)
+      | Const (\<^const_name>\<open>snd\<close>, _) $ t1 =>
         let
           val pair_arity = arity_of S_Rep card (fastype_of1 (Ts, t1))
           val snd_arity = arity_of S_Rep card (fastype_of1 (Ts, t))
           val fst_arity = pair_arity - snd_arity
         in Project (to_S_rep Ts t1, num_seq fst_arity snd_arity) end
-      | Const (@{const_name snd}, _) => to_S_rep Ts (eta_expand Ts t 1)
+      | Const (\<^const_name>\<open>snd\<close>, _) => to_S_rep Ts (eta_expand Ts t 1)
       | Bound j => rel_expr_for_bound_var card S_Rep Ts j
       | _ => S_rep_from_R_rep Ts (fastype_of1 (Ts, t)) (to_R_rep Ts t)
     and partial_set_op swap1 swap2 op1 op2 Ts t1 t2 =
@@ -211,37 +211,37 @@
       end
     and to_R_rep Ts t =
       (case t of
-         @{const Not} => to_R_rep Ts (eta_expand Ts t 1)
-       | Const (@{const_name All}, _) => to_R_rep Ts (eta_expand Ts t 1)
-       | Const (@{const_name Ex}, _) => to_R_rep Ts (eta_expand Ts t 1)
-       | Const (@{const_name HOL.eq}, _) $ _ => to_R_rep Ts (eta_expand Ts t 1)
-       | Const (@{const_name HOL.eq}, _) => to_R_rep Ts (eta_expand Ts t 2)
-       | Const (@{const_name ord_class.less_eq},
-                Type (@{type_name fun},
-                      [Type (@{type_name fun}, [_, @{typ bool}]), _])) $ _ =>
+         \<^const>\<open>Not\<close> => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (\<^const_name>\<open>All\<close>, _) => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (\<^const_name>\<open>Ex\<close>, _) => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (\<^const_name>\<open>HOL.eq\<close>, _) $ _ => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (\<^const_name>\<open>HOL.eq\<close>, _) => to_R_rep Ts (eta_expand Ts t 2)
+       | Const (\<^const_name>\<open>ord_class.less_eq\<close>,
+                Type (\<^type_name>\<open>fun\<close>,
+                      [Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _])) $ _ =>
          to_R_rep Ts (eta_expand Ts t 1)
-       | Const (@{const_name ord_class.less_eq}, _) =>
+       | Const (\<^const_name>\<open>ord_class.less_eq\<close>, _) =>
          to_R_rep Ts (eta_expand Ts t 2)
-       | @{const HOL.conj} $ _ => to_R_rep Ts (eta_expand Ts t 1)
-       | @{const HOL.conj} => to_R_rep Ts (eta_expand Ts t 2)
-       | @{const HOL.disj} $ _ => to_R_rep Ts (eta_expand Ts t 1)
-       | @{const HOL.disj} => to_R_rep Ts (eta_expand Ts t 2)
-       | @{const HOL.implies} $ _ => to_R_rep Ts (eta_expand Ts t 1)
-       | @{const HOL.implies} => to_R_rep Ts (eta_expand Ts t 2)
-       | Const (@{const_name Set.member}, _) $ _ =>
+       | \<^const>\<open>HOL.conj\<close> $ _ => to_R_rep Ts (eta_expand Ts t 1)
+       | \<^const>\<open>HOL.conj\<close> => to_R_rep Ts (eta_expand Ts t 2)
+       | \<^const>\<open>HOL.disj\<close> $ _ => to_R_rep Ts (eta_expand Ts t 1)
+       | \<^const>\<open>HOL.disj\<close> => to_R_rep Ts (eta_expand Ts t 2)
+       | \<^const>\<open>HOL.implies\<close> $ _ => to_R_rep Ts (eta_expand Ts t 1)
+       | \<^const>\<open>HOL.implies\<close> => to_R_rep Ts (eta_expand Ts t 2)
+       | Const (\<^const_name>\<open>Set.member\<close>, _) $ _ =>
          to_R_rep Ts (eta_expand Ts t 1)
-       | Const (@{const_name Set.member}, _) => to_R_rep Ts (eta_expand Ts t 2)
-       | Const (@{const_name Collect}, _) $ t' => to_R_rep Ts t'
-       | Const (@{const_name Collect}, _) => to_R_rep Ts (eta_expand Ts t 1)
-       | Const (@{const_name bot_class.bot},
-                T as Type (@{type_name fun}, [T', @{typ bool}])) =>
+       | Const (\<^const_name>\<open>Set.member\<close>, _) => to_R_rep Ts (eta_expand Ts t 2)
+       | Const (\<^const_name>\<open>Collect\<close>, _) $ t' => to_R_rep Ts t'
+       | Const (\<^const_name>\<open>Collect\<close>, _) => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (\<^const_name>\<open>bot_class.bot\<close>,
+                T as Type (\<^type_name>\<open>fun\<close>, [T', \<^typ>\<open>bool\<close>])) =>
          if total then empty_n_ary_rel (arity_of (R_Rep total) card T)
          else Product (atom_seq_product_of (R_Rep total) card T', false_atom)
-       | Const (@{const_name top_class.top},
-                T as Type (@{type_name fun}, [T', @{typ bool}])) =>
+       | Const (\<^const_name>\<open>top_class.top\<close>,
+                T as Type (\<^type_name>\<open>fun\<close>, [T', \<^typ>\<open>bool\<close>])) =>
          if total then atom_seq_product_of (R_Rep total) card T
          else Product (atom_seq_product_of (R_Rep total) card T', true_atom)
-       | Const (@{const_name insert}, Type (_, [T, _])) $ t1 $ t2 =>
+       | Const (\<^const_name>\<open>insert\<close>, Type (_, [T, _])) $ t1 $ t2 =>
          if total then
            Union (to_S_rep Ts t1, to_R_rep Ts t2)
          else
@@ -258,9 +258,9 @@
                     Difference (kt2, Product (atom_seq_product_of S_Rep card T,
                                               false_atom)))
            end
-       | Const (@{const_name insert}, _) $ _ => to_R_rep Ts (eta_expand Ts t 1)
-       | Const (@{const_name insert}, _) => to_R_rep Ts (eta_expand Ts t 2)
-       | Const (@{const_name trancl},
+       | Const (\<^const_name>\<open>insert\<close>, _) $ _ => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (\<^const_name>\<open>insert\<close>, _) => to_R_rep Ts (eta_expand Ts t 2)
+       | Const (\<^const_name>\<open>trancl\<close>,
                 Type (_, [Type (_, [Type (_, [T', _]), _]), _])) $ t1 =>
          if arity_of S_Rep card T' = 1 then
            if total then
@@ -281,57 +281,57 @@
              end
          else
            error "Not supported: Transitive closure for function or pair type."
-       | Const (@{const_name trancl}, _) => to_R_rep Ts (eta_expand Ts t 1)
-       | Const (@{const_name inf_class.inf},
-                Type (@{type_name fun},
-                      [Type (@{type_name fun}, [_, @{typ bool}]), _]))
+       | Const (\<^const_name>\<open>trancl\<close>, _) => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (\<^const_name>\<open>inf_class.inf\<close>,
+                Type (\<^type_name>\<open>fun\<close>,
+                      [Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _]))
          $ t1 $ t2 =>
          if total then Intersect (to_R_rep Ts t1, to_R_rep Ts t2)
          else partial_set_op true true Intersect Union Ts t1 t2
-       | Const (@{const_name inf_class.inf}, _) $ _ =>
+       | Const (\<^const_name>\<open>inf_class.inf\<close>, _) $ _ =>
          to_R_rep Ts (eta_expand Ts t 1)
-       | Const (@{const_name inf_class.inf}, _) =>
+       | Const (\<^const_name>\<open>inf_class.inf\<close>, _) =>
          to_R_rep Ts (eta_expand Ts t 2)
-       | Const (@{const_name sup_class.sup},
-                Type (@{type_name fun},
-                      [Type (@{type_name fun}, [_, @{typ bool}]), _]))
+       | Const (\<^const_name>\<open>sup_class.sup\<close>,
+                Type (\<^type_name>\<open>fun\<close>,
+                      [Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _]))
          $ t1 $ t2 =>
          if total then Union (to_R_rep Ts t1, to_R_rep Ts t2)
          else partial_set_op true true Union Intersect Ts t1 t2
-       | Const (@{const_name sup_class.sup}, _) $ _ =>
+       | Const (\<^const_name>\<open>sup_class.sup\<close>, _) $ _ =>
          to_R_rep Ts (eta_expand Ts t 1)
-       | Const (@{const_name sup_class.sup}, _) =>
+       | Const (\<^const_name>\<open>sup_class.sup\<close>, _) =>
          to_R_rep Ts (eta_expand Ts t 2)
-       | Const (@{const_name minus_class.minus},
-                Type (@{type_name fun},
-                      [Type (@{type_name fun}, [_, @{typ bool}]), _]))
+       | Const (\<^const_name>\<open>minus_class.minus\<close>,
+                Type (\<^type_name>\<open>fun\<close>,
+                      [Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _]))
          $ t1 $ t2 =>
          if total then Difference (to_R_rep Ts t1, to_R_rep Ts t2)
          else partial_set_op true false Intersect Union Ts t1 t2
-       | Const (@{const_name minus_class.minus},
-                Type (@{type_name fun},
-                      [Type (@{type_name fun}, [_, @{typ bool}]), _])) $ _ =>
+       | Const (\<^const_name>\<open>minus_class.minus\<close>,
+                Type (\<^type_name>\<open>fun\<close>,
+                      [Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _])) $ _ =>
          to_R_rep Ts (eta_expand Ts t 1)
-       | Const (@{const_name minus_class.minus},
-                Type (@{type_name fun},
-                      [Type (@{type_name fun}, [_, @{typ bool}]), _])) =>
+       | Const (\<^const_name>\<open>minus_class.minus\<close>,
+                Type (\<^type_name>\<open>fun\<close>,
+                      [Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _])) =>
          to_R_rep Ts (eta_expand Ts t 2)
-       | Const (@{const_name Pair}, _) $ _ $ _ => to_S_rep Ts t
-       | Const (@{const_name Pair}, _) $ _ => to_S_rep Ts t
-       | Const (@{const_name Pair}, _) => to_S_rep Ts t
-       | Const (@{const_name fst}, _) $ _ => raise SAME ()
-       | Const (@{const_name fst}, _) => raise SAME ()
-       | Const (@{const_name snd}, _) $ _ => raise SAME ()
-       | Const (@{const_name snd}, _) => raise SAME ()
-       | @{const False} => false_atom
-       | @{const True} => true_atom
+       | Const (\<^const_name>\<open>Pair\<close>, _) $ _ $ _ => to_S_rep Ts t
+       | Const (\<^const_name>\<open>Pair\<close>, _) $ _ => to_S_rep Ts t
+       | Const (\<^const_name>\<open>Pair\<close>, _) => to_S_rep Ts t
+       | Const (\<^const_name>\<open>fst\<close>, _) $ _ => raise SAME ()
+       | Const (\<^const_name>\<open>fst\<close>, _) => raise SAME ()
+       | Const (\<^const_name>\<open>snd\<close>, _) $ _ => raise SAME ()
+       | Const (\<^const_name>\<open>snd\<close>, _) => raise SAME ()
+       | \<^const>\<open>False\<close> => false_atom
+       | \<^const>\<open>True\<close> => true_atom
        | Free (x as (_, T)) =>
          Rel (arity_of (R_Rep total) card T, find_index (curry (op =) x) frees)
        | Term.Var _ => error "Not supported: Schematic variables."
        | Bound _ => raise SAME ()
        | Abs (_, T, t') =>
          (case (total, fastype_of1 (T :: Ts, t')) of
-            (true, @{typ bool}) =>
+            (true, \<^typ>\<open>bool\<close>) =>
             Comprehension (decls_for S_Rep card Ts T, to_F NONE (T :: Ts) t')
           | (_, T') =>
             Comprehension (decls_for S_Rep card Ts T @
@@ -341,7 +341,7 @@
                                    to_R_rep (T :: Ts) t')))
        | t1 $ t2 =>
          (case fastype_of1 (Ts, t) of
-            @{typ bool} =>
+            \<^typ>\<open>bool\<close> =>
             if total then
               S_rep_from_F NONE (to_F NONE Ts t)
             else
@@ -374,7 +374,7 @@
   end
 
 fun declarative_axiom_for_rel_expr total card Ts
-                                   (Type (@{type_name fun}, [T1, T2])) r =
+                                   (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) r =
     if total andalso body_type T2 = bool_T then
       True
     else
@@ -388,28 +388,28 @@
       (Rel (arity_of (R_Rep total) card T, i))
 
 (* Hack to make the old code work as is with sets. *)
-fun unsetify_type (Type (@{type_name set}, [T])) = unsetify_type T --> bool_T
+fun unsetify_type (Type (\<^type_name>\<open>set\<close>, [T])) = unsetify_type T --> bool_T
   | unsetify_type (Type (s, Ts)) = Type (s, map unsetify_type Ts)
   | unsetify_type T = T
 
 fun kodkod_problem_from_term ctxt total raw_card raw_infinite t =
   let
     val thy = Proof_Context.theory_of ctxt
-    fun card (Type (@{type_name fun}, [T1, T2])) =
+    fun card (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
         reasonable_power (card T2) (card T1)
-      | card (Type (@{type_name prod}, [T1, T2])) = card T1 * card T2
-      | card @{typ bool} = 2
+      | card (Type (\<^type_name>\<open>prod\<close>, [T1, T2])) = card T1 * card T2
+      | card \<^typ>\<open>bool\<close> = 2
       | card T = Int.max (1, raw_card T)
-    fun complete (Type (@{type_name fun}, [T1, T2])) =
+    fun complete (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
         concrete T1 andalso complete T2
-      | complete (Type (@{type_name prod}, Ts)) = forall complete Ts
+      | complete (Type (\<^type_name>\<open>prod\<close>, Ts)) = forall complete Ts
       | complete T = not (raw_infinite T)
-    and concrete (Type (@{type_name fun}, [T1, T2])) =
+    and concrete (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
         complete T1 andalso concrete T2
-      | concrete (Type (@{type_name prod}, Ts)) = forall concrete Ts
+      | concrete (Type (\<^type_name>\<open>prod\<close>, Ts)) = forall concrete Ts
       | concrete _ = true
     val neg_t =
-      @{const Not} $ Object_Logic.atomize_term ctxt t
+      \<^const>\<open>Not\<close> $ Object_Logic.atomize_term ctxt t
       |> map_types unsetify_type
     val _ = fold_types (K o check_type ctxt raw_infinite) neg_t ()
     val frees = Term.add_frees neg_t []
@@ -445,7 +445,7 @@
     | Error (s, _) => error ("Kodkod error: " ^ s)
   end
 
-val default_raw_infinite = member (op =) [@{typ nat}, @{typ int}]
+val default_raw_infinite = member (op =) [\<^typ>\<open>nat\<close>, \<^typ>\<open>int\<close>]
 
 fun minipick ctxt n t =
   let