--- a/src/HOL/Tools/ATP/atp_util.ML Sat Jan 05 17:00:43 2019 +0100
+++ b/src/HOL/Tools/ATP/atp_util.ML Sat Jan 05 17:24:33 2019 +0100
@@ -264,39 +264,39 @@
Const (\<^const_name>\<open>Ex\<close>, T) $ Abs (s, T', s_not t')
| s_not (Const (\<^const_name>\<open>Ex\<close>, T) $ Abs (s, T', t')) =
Const (\<^const_name>\<open>All\<close>, T) $ Abs (s, T', s_not t')
- | s_not (@{const HOL.implies} $ t1 $ t2) = @{const HOL.conj} $ t1 $ s_not t2
- | s_not (@{const HOL.conj} $ t1 $ t2) =
- @{const HOL.disj} $ s_not t1 $ s_not t2
- | s_not (@{const HOL.disj} $ t1 $ t2) =
- @{const HOL.conj} $ s_not t1 $ s_not t2
- | s_not (@{const False}) = @{const True}
- | s_not (@{const True}) = @{const False}
- | s_not (@{const Not} $ t) = t
- | s_not t = @{const Not} $ t
+ | s_not (\<^const>\<open>HOL.implies\<close> $ t1 $ t2) = \<^const>\<open>HOL.conj\<close> $ t1 $ s_not t2
+ | s_not (\<^const>\<open>HOL.conj\<close> $ t1 $ t2) =
+ \<^const>\<open>HOL.disj\<close> $ s_not t1 $ s_not t2
+ | s_not (\<^const>\<open>HOL.disj\<close> $ t1 $ t2) =
+ \<^const>\<open>HOL.conj\<close> $ s_not t1 $ s_not t2
+ | s_not (\<^const>\<open>False\<close>) = \<^const>\<open>True\<close>
+ | s_not (\<^const>\<open>True\<close>) = \<^const>\<open>False\<close>
+ | s_not (\<^const>\<open>Not\<close> $ t) = t
+ | s_not t = \<^const>\<open>Not\<close> $ t
-fun s_conj (@{const True}, t2) = t2
- | s_conj (t1, @{const True}) = t1
- | s_conj (@{const False}, _) = @{const False}
- | s_conj (_, @{const False}) = @{const False}
+fun s_conj (\<^const>\<open>True\<close>, t2) = t2
+ | s_conj (t1, \<^const>\<open>True\<close>) = t1
+ | s_conj (\<^const>\<open>False\<close>, _) = \<^const>\<open>False\<close>
+ | s_conj (_, \<^const>\<open>False\<close>) = \<^const>\<open>False\<close>
| s_conj (t1, t2) = if t1 aconv t2 then t1 else HOLogic.mk_conj (t1, t2)
-fun s_disj (@{const False}, t2) = t2
- | s_disj (t1, @{const False}) = t1
- | s_disj (@{const True}, _) = @{const True}
- | s_disj (_, @{const True}) = @{const True}
+fun s_disj (\<^const>\<open>False\<close>, t2) = t2
+ | s_disj (t1, \<^const>\<open>False\<close>) = t1
+ | s_disj (\<^const>\<open>True\<close>, _) = \<^const>\<open>True\<close>
+ | s_disj (_, \<^const>\<open>True\<close>) = \<^const>\<open>True\<close>
| s_disj (t1, t2) = if t1 aconv t2 then t1 else HOLogic.mk_disj (t1, t2)
-fun s_imp (@{const True}, t2) = t2
- | s_imp (t1, @{const False}) = s_not t1
- | s_imp (@{const False}, _) = @{const True}
- | s_imp (_, @{const True}) = @{const True}
+fun s_imp (\<^const>\<open>True\<close>, t2) = t2
+ | s_imp (t1, \<^const>\<open>False\<close>) = s_not t1
+ | s_imp (\<^const>\<open>False\<close>, _) = \<^const>\<open>True\<close>
+ | s_imp (_, \<^const>\<open>True\<close>) = \<^const>\<open>True\<close>
| s_imp p = HOLogic.mk_imp p
-fun s_iff (@{const True}, t2) = t2
- | s_iff (t1, @{const True}) = t1
- | s_iff (@{const False}, t2) = s_not t2
- | s_iff (t1, @{const False}) = s_not t1
- | s_iff (t1, t2) = if t1 aconv t2 then @{const True} else HOLogic.eq_const HOLogic.boolT $ t1 $ t2
+fun s_iff (\<^const>\<open>True\<close>, t2) = t2
+ | s_iff (t1, \<^const>\<open>True\<close>) = t1
+ | s_iff (\<^const>\<open>False\<close>, t2) = s_not t2
+ | s_iff (t1, \<^const>\<open>False\<close>) = s_not t1
+ | s_iff (t1, t2) = if t1 aconv t2 then \<^const>\<open>True\<close> else HOLogic.eq_const HOLogic.boolT $ t1 $ t2
fun close_form t =
fold (fn ((s, i), T) => fn t' =>
@@ -352,11 +352,11 @@
fun unextensionalize_def t =
case t of
- @{const Trueprop} $ (Const (\<^const_name>\<open>HOL.eq\<close>, _) $ lhs $ rhs) =>
+ \<^const>\<open>Trueprop\<close> $ (Const (\<^const_name>\<open>HOL.eq\<close>, _) $ lhs $ rhs) =>
(case strip_comb lhs of
(c as Const (_, T), args) =>
if forall is_Var args andalso not (has_duplicates (op =) args) then
- @{const Trueprop}
+ \<^const>\<open>Trueprop\<close>
$ (Const (\<^const_name>\<open>HOL.eq\<close>, T --> T --> \<^typ>\<open>bool\<close>)
$ c $ fold_rev lambda args rhs)
else
@@ -370,8 +370,8 @@
"Meson_Clausify".) *)
fun transform_elim_prop t =
case Logic.strip_imp_concl t of
- @{const Trueprop} $ Var (z, \<^typ>\<open>bool\<close>) =>
- subst_Vars [(z, @{const False})] t
+ \<^const>\<open>Trueprop\<close> $ Var (z, \<^typ>\<open>bool\<close>) =>
+ subst_Vars [(z, \<^const>\<open>False\<close>)] t
| Var (z, \<^typ>\<open>prop\<close>) => subst_Vars [(z, \<^prop>\<open>False\<close>)] t
| _ => t