(* Title: HOL/Tools/Function/lexicographic_order.ML
Author: Lukas Bulwahn, TU Muenchen
Author: Alexander Krauss, TU Muenchen
Termination proofs with lexicographic orders.
*)
signature LEXICOGRAPHIC_ORDER =
sig
val lex_order_tac : bool -> Proof.context -> tactic -> tactic
val lexicographic_order_tac : bool -> Proof.context -> tactic
end
structure Lexicographic_Order : LEXICOGRAPHIC_ORDER =
struct
open Function_Lib
(** General stuff **)
fun mk_measures domT mfuns =
let
val relT = HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT))
val mlexT = (domT --> HOLogic.natT) --> relT --> relT
fun mk_ms [] = Const (@{const_abbrev Set.empty}, relT)
| mk_ms (f::fs) =
Const (@{const_name mlex_prod}, mlexT) $ f $ mk_ms fs
in
mk_ms mfuns
end
fun del_index n [] = []
| del_index n (x :: xs) =
if n > 0 then x :: del_index (n - 1) xs else xs
fun transpose ([]::_) = []
| transpose xss = map hd xss :: transpose (map tl xss)
(** Matrix cell datatype **)
datatype cell =
Less of thm | LessEq of (thm * thm) | None of (thm * thm) | False of thm;
fun is_Less lcell = case Lazy.force lcell of Less _ => true | _ => false;
fun is_LessEq lcell = case Lazy.force lcell of LessEq _ => true | _ => false;
(** Proof attempts to build the matrix **)
fun dest_term t =
let
val (vars, prop) = Function_Lib.dest_all_all t
val (prems, concl) = Logic.strip_horn prop
val (lhs, rhs) = concl
|> HOLogic.dest_Trueprop
|> HOLogic.dest_mem |> fst
|> HOLogic.dest_prod
in
(vars, prems, lhs, rhs)
end
fun mk_goal (vars, prems, lhs, rhs) rel =
let
val concl = HOLogic.mk_binrel rel (lhs, rhs) |> HOLogic.mk_Trueprop
in
fold_rev Logic.all vars (Logic.list_implies (prems, concl))
end
fun mk_cell ctxt solve_tac (vars, prems, lhs, rhs) mfun = Lazy.lazy (fn _ =>
let
val goals = Thm.cterm_of ctxt o mk_goal (vars, prems, mfun $ lhs, mfun $ rhs)
in
(case try_proof ctxt (goals @{const_name Orderings.less}) solve_tac of
Solved thm => Less thm
| Stuck thm =>
(case try_proof ctxt (goals @{const_name Orderings.less_eq}) solve_tac of
Solved thm2 => LessEq (thm2, thm)
| Stuck thm2 =>
if Thm.prems_of thm2 = [HOLogic.Trueprop $ @{term False}] then False thm2
else None (thm2, thm)
| _ => raise Match) (* FIXME *)
| _ => raise Match)
end);
(** Search algorithms **)
fun check_col ls = forall (fn c => is_Less c orelse is_LessEq c) ls andalso not (forall is_LessEq ls)
fun transform_table table col = table |> filter_out (fn x => is_Less (nth x col)) |> map (del_index col)
fun transform_order col order = map (fn x => if x >= col then x + 1 else x) order
(* simple depth-first search algorithm for the table *)
fun search_table [] = SOME []
| search_table table =
case find_index check_col (transpose table) of
~1 => NONE
| col =>
(case (table, col) |-> transform_table |> search_table of
NONE => NONE
| SOME order => SOME (col :: transform_order col order))
(** Proof Reconstruction **)
fun prove_row_tac ctxt (c :: cs) =
(case Lazy.force c of
Less thm =>
resolve_tac ctxt @{thms mlex_less} 1
THEN PRIMITIVE (Thm.elim_implies thm)
| LessEq (thm, _) =>
resolve_tac ctxt @{thms mlex_leq} 1
THEN PRIMITIVE (Thm.elim_implies thm)
THEN prove_row_tac ctxt cs
| _ => raise General.Fail "lexicographic_order")
| prove_row_tac _ [] = no_tac;
(** Error reporting **)
fun row_index i = chr (i + 97) (* FIXME not scalable wrt. chr range *)
fun col_index j = string_of_int (j + 1) (* FIXME not scalable wrt. table layout *)
fun pr_unprovable_cell _ ((i,j), Less _) = []
| pr_unprovable_cell ctxt ((i,j), LessEq (_, st)) =
["(" ^ row_index i ^ ", " ^ col_index j ^ ", <):\n" ^
Goal_Display.string_of_goal ctxt st]
| pr_unprovable_cell ctxt ((i,j), None (st_leq, st_less)) =
["(" ^ row_index i ^ ", " ^ col_index j ^ ", <):\n" ^
Goal_Display.string_of_goal ctxt st_less ^
"\n(" ^ row_index i ^ ", " ^ col_index j ^ ", <=):\n" ^
Goal_Display.string_of_goal ctxt st_leq]
| pr_unprovable_cell ctxt ((i,j), False st) =
["(" ^ row_index i ^ ", " ^ col_index j ^ ", <):\n" ^
Goal_Display.string_of_goal ctxt st]
fun pr_unprovable_subgoals ctxt table =
table
|> map_index (fn (i,cs) => map_index (fn (j,x) => ((i,j), x)) cs)
|> flat
|> maps (pr_unprovable_cell ctxt)
fun pr_cell (Less _ ) = " < "
| pr_cell (LessEq _) = " <="
| pr_cell (None _) = " ? "
| pr_cell (False _) = " F "
fun no_order_msg ctxt ltable tl measure_funs =
let
val table = map (map Lazy.force) ltable
val prterm = Syntax.string_of_term ctxt
fun pr_fun t i = string_of_int i ^ ") " ^ prterm t
fun pr_goal t i =
let
val (_, _, lhs, rhs) = dest_term t
in (* also show prems? *)
i ^ ") " ^ prterm rhs ^ " ~> " ^ prterm lhs
end
val gc = map (fn i => chr (i + 96)) (1 upto length table)
val mc = 1 upto length measure_funs
val tstr = "Result matrix:" :: (" " ^ implode (map (enclose " " " " o string_of_int) mc))
:: map2 (fn r => fn i => i ^ ": " ^ implode (map pr_cell r)) table gc
val gstr = "Calls:" :: map2 (prefix " " oo pr_goal) tl gc
val mstr = "Measures:" :: map2 (prefix " " oo pr_fun) measure_funs mc
val ustr = "Unfinished subgoals:" :: pr_unprovable_subgoals ctxt table
in
cat_lines (ustr @ gstr @ mstr @ tstr @
["", "Could not find lexicographic termination order."])
end
(** The Main Function **)
fun lex_order_tac quiet ctxt solve_tac st = SUBGOAL (fn _ =>
let
val ((_ $ (_ $ rel)) :: tl) = Thm.prems_of st
val (domT, _) = HOLogic.dest_prodT (HOLogic.dest_setT (fastype_of rel))
val measure_funs = (* 1: generate measures *)
Measure_Functions.get_measure_functions ctxt domT
val table = (* 2: create table *)
map (fn t => map (mk_cell ctxt solve_tac (dest_term t)) measure_funs) tl
in
fn st =>
case search_table table of
NONE => if quiet then no_tac st else error (no_order_msg ctxt table tl measure_funs)
| SOME order =>
let
val clean_table = map (fn x => map (nth x) order) table
val relation = mk_measures domT (map (nth measure_funs) order)
val _ =
if not quiet then
Pretty.writeln (Pretty.block
[Pretty.str "Found termination order:", Pretty.brk 1,
Pretty.quote (Syntax.pretty_term ctxt relation)])
else ()
in (* 4: proof reconstruction *)
st |>
(PRIMITIVE (infer_instantiate ctxt [(#1 (dest_Var rel), Thm.cterm_of ctxt relation)])
THEN (REPEAT (resolve_tac ctxt @{thms wf_mlex} 1))
THEN (resolve_tac ctxt @{thms wf_empty} 1)
THEN EVERY (map (prove_row_tac ctxt) clean_table))
end
end) 1 st;
fun lexicographic_order_tac quiet ctxt =
TRY (Function_Common.termination_rule_tac ctxt 1) THEN
lex_order_tac quiet ctxt
(auto_tac (ctxt addsimps (Named_Theorems.get ctxt @{named_theorems termination_simp})))
val _ =
Theory.setup
(Context.theory_map
(Function_Common.set_termination_prover lexicographic_order_tac))
end;