(*  Title:      HOL/Library/Heap_Monad.thy
    ID:         $Id$
    Author:     John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen
*)
header {* A monad with a polymorphic heap *}
theory Heap_Monad
imports Heap
begin
subsection {* The monad *}
subsubsection {* Monad combinators *}
datatype exception = Exn
text {* Monadic heap actions either produce values
  and transform the heap, or fail *}
datatype 'a Heap = Heap "heap \<Rightarrow> ('a + exception) \<times> heap"
primrec
  execute :: "'a Heap \<Rightarrow> heap \<Rightarrow> ('a + exception) \<times> heap" where
  "execute (Heap f) = f"
lemmas [code del] = execute.simps
lemma Heap_execute [simp]:
  "Heap (execute f) = f" by (cases f) simp_all
lemma Heap_eqI:
  "(\<And>h. execute f h = execute g h) \<Longrightarrow> f = g"
    by (cases f, cases g) (auto simp: expand_fun_eq)
lemma Heap_eqI':
  "(\<And>h. (\<lambda>x. execute (f x) h) = (\<lambda>y. execute (g y) h)) \<Longrightarrow> f = g"
    by (auto simp: expand_fun_eq intro: Heap_eqI)
lemma Heap_strip: "(\<And>f. PROP P f) \<equiv> (\<And>g. PROP P (Heap g))"
proof
  fix g :: "heap \<Rightarrow> ('a + exception) \<times> heap" 
  assume "\<And>f. PROP P f"
  then show "PROP P (Heap g)" .
next
  fix f :: "'a Heap" 
  assume assm: "\<And>g. PROP P (Heap g)"
  then have "PROP P (Heap (execute f))" .
  then show "PROP P f" by simp
qed
definition
  heap :: "(heap \<Rightarrow> 'a \<times> heap) \<Rightarrow> 'a Heap" where
  [code del]: "heap f = Heap (\<lambda>h. apfst Inl (f h))"
lemma execute_heap [simp]:
  "execute (heap f) h = apfst Inl (f h)"
  by (simp add: heap_def)
definition
  bindM :: "'a Heap \<Rightarrow> ('a \<Rightarrow> 'b Heap) \<Rightarrow> 'b Heap" (infixl ">>=" 54) where
  [code del]: "f >>= g = Heap (\<lambda>h. case execute f h of
                  (Inl x, h') \<Rightarrow> execute (g x) h'
                | r \<Rightarrow> r)"
notation
  bindM (infixl "\<guillemotright>=" 54)
abbreviation
  chainM :: "'a Heap \<Rightarrow> 'b Heap \<Rightarrow> 'b Heap"  (infixl ">>" 54) where
  "f >> g \<equiv> f >>= (\<lambda>_. g)"
notation
  chainM (infixl "\<guillemotright>" 54)
definition
  return :: "'a \<Rightarrow> 'a Heap" where
  [code del]: "return x = heap (Pair x)"
lemma execute_return [simp]:
  "execute (return x) h = apfst Inl (x, h)"
  by (simp add: return_def)
definition
  raise :: "string \<Rightarrow> 'a Heap" where -- {* the string is just decoration *}
  [code del]: "raise s = Heap (Pair (Inr Exn))"
notation (latex output)
  "raise" ("\<^raw:{\textsf{raise}}>")
lemma execute_raise [simp]:
  "execute (raise s) h = (Inr Exn, h)"
  by (simp add: raise_def)
subsubsection {* do-syntax *}
text {*
  We provide a convenient do-notation for monadic expressions
  well-known from Haskell.  @{const Let} is printed
  specially in do-expressions.
*}
nonterminals do_expr
syntax
  "_do" :: "do_expr \<Rightarrow> 'a"
    ("(do (_)//done)" [12] 100)
  "_bindM" :: "pttrn \<Rightarrow> 'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
    ("_ <- _;//_" [1000, 13, 12] 12)
  "_chainM" :: "'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
    ("_;//_" [13, 12] 12)
  "_let" :: "pttrn \<Rightarrow> 'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
    ("let _ = _;//_" [1000, 13, 12] 12)
  "_nil" :: "'a \<Rightarrow> do_expr"
    ("_" [12] 12)
syntax (xsymbols)
  "_bindM" :: "pttrn \<Rightarrow> 'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
    ("_ \<leftarrow> _;//_" [1000, 13, 12] 12)
syntax (latex output)
  "_do" :: "do_expr \<Rightarrow> 'a"
    ("(\<^raw:{\textsf{do}}> (_))" [12] 100)
  "_let" :: "pttrn \<Rightarrow> 'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
    ("\<^raw:\textsf{let}> _ = _;//_" [1000, 13, 12] 12)
notation (latex output)
  "return" ("\<^raw:{\textsf{return}}>")
translations
  "_do f" => "f"
  "_bindM x f g" => "f \<guillemotright>= (\<lambda>x. g)"
  "_chainM f g" => "f \<guillemotright> g"
  "_let x t f" => "CONST Let t (\<lambda>x. f)"
  "_nil f" => "f"
print_translation {*
let
  fun dest_abs_eta (Abs (abs as (_, ty, _))) =
        let
          val (v, t) = Syntax.variant_abs abs;
        in (Free (v, ty), t) end
    | dest_abs_eta t =
        let
          val (v, t) = Syntax.variant_abs ("", dummyT, t $ Bound 0);
        in (Free (v, dummyT), t) end;
  fun unfold_monad (Const (@{const_syntax bindM}, _) $ f $ g) =
        let
          val (v, g') = dest_abs_eta g;
          val vs = fold_aterms (fn Free (v, _) => insert (op =) v | _ => I) v [];
          val v_used = fold_aterms
            (fn Free (w, _) => (fn s => s orelse member (op =) vs w) | _ => I) g' false;
        in if v_used then
          Const ("_bindM", dummyT) $ v $ f $ unfold_monad g'
        else
          Const ("_chainM", dummyT) $ f $ unfold_monad g'
        end
    | unfold_monad (Const (@{const_syntax chainM}, _) $ f $ g) =
        Const ("_chainM", dummyT) $ f $ unfold_monad g
    | unfold_monad (Const (@{const_syntax Let}, _) $ f $ g) =
        let
          val (v, g') = dest_abs_eta g;
        in Const ("_let", dummyT) $ v $ f $ unfold_monad g' end
    | unfold_monad (Const (@{const_syntax Pair}, _) $ f) =
        Const (@{const_syntax return}, dummyT) $ f
    | unfold_monad f = f;
  fun contains_bindM (Const (@{const_syntax bindM}, _) $ _ $ _) = true
    | contains_bindM (Const (@{const_syntax Let}, _) $ _ $ Abs (_, _, t)) =
        contains_bindM t;
  fun bindM_monad_tr' (f::g::ts) = list_comb
    (Const ("_do", dummyT) $ unfold_monad (Const (@{const_syntax bindM}, dummyT) $ f $ g), ts);
  fun Let_monad_tr' (f :: (g as Abs (_, _, g')) :: ts) = if contains_bindM g' then list_comb
      (Const ("_do", dummyT) $ unfold_monad (Const (@{const_syntax Let}, dummyT) $ f $ g), ts)
    else raise Match;
in [
  (@{const_syntax bindM}, bindM_monad_tr'),
  (@{const_syntax Let}, Let_monad_tr')
] end;
*}
subsection {* Monad properties *}
subsubsection {* Monad laws *}
lemma return_bind: "return x \<guillemotright>= f = f x"
  by (simp add: bindM_def return_def)
lemma bind_return: "f \<guillemotright>= return = f"
proof (rule Heap_eqI)
  fix h
  show "execute (f \<guillemotright>= return) h = execute f h"
    by (auto simp add: bindM_def return_def split: sum.splits prod.splits)
qed
lemma bind_bind: "(f \<guillemotright>= g) \<guillemotright>= h = f \<guillemotright>= (\<lambda>x. g x \<guillemotright>= h)"
  by (rule Heap_eqI) (auto simp add: bindM_def split: split: sum.splits prod.splits)
lemma bind_bind': "f \<guillemotright>= (\<lambda>x. g x \<guillemotright>= h x) = f \<guillemotright>= (\<lambda>x. g x \<guillemotright>= (\<lambda>y. return (x, y))) \<guillemotright>= (\<lambda>(x, y). h x y)"
  by (rule Heap_eqI) (auto simp add: bindM_def split: split: sum.splits prod.splits)
lemma raise_bind: "raise e \<guillemotright>= f = raise e"
  by (simp add: raise_def bindM_def)
lemmas monad_simp = return_bind bind_return bind_bind raise_bind
subsection {* Generic combinators *}
definition
  liftM :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b Heap"
where
  "liftM f = return o f"
definition
  compM :: "('a \<Rightarrow> 'b Heap) \<Rightarrow> ('b \<Rightarrow> 'c Heap) \<Rightarrow> 'a \<Rightarrow> 'c Heap" (infixl ">>==" 54)
where
  "(f >>== g) = (\<lambda>x. f x \<guillemotright>= g)"
notation
  compM (infixl "\<guillemotright>==" 54)
lemma liftM_collapse: "liftM f x = return (f x)"
  by (simp add: liftM_def)
lemma liftM_compM: "liftM f \<guillemotright>== g = g o f"
  by (auto intro: Heap_eqI' simp add: expand_fun_eq liftM_def compM_def bindM_def)
lemma compM_return: "f \<guillemotright>== return = f"
  by (simp add: compM_def monad_simp)
lemma compM_compM: "(f \<guillemotright>== g) \<guillemotright>== h = f \<guillemotright>== (g \<guillemotright>== h)"
  by (simp add: compM_def monad_simp)
lemma liftM_bind:
  "(\<lambda>x. liftM f x \<guillemotright>= liftM g) = liftM (\<lambda>x. g (f x))"
  by (rule Heap_eqI') (simp add: monad_simp liftM_def bindM_def)
lemma liftM_comp:
  "liftM f o g = liftM (f o g)"
  by (rule Heap_eqI') (simp add: liftM_def)
lemmas monad_simp' = monad_simp liftM_compM compM_return
  compM_compM liftM_bind liftM_comp
primrec 
  mapM :: "('a \<Rightarrow> 'b Heap) \<Rightarrow> 'a list \<Rightarrow> 'b list Heap"
where
  "mapM f [] = return []"
  | "mapM f (x#xs) = do y \<leftarrow> f x;
                        ys \<leftarrow> mapM f xs;
                        return (y # ys)
                     done"
primrec
  foldM :: "('a \<Rightarrow> 'b \<Rightarrow> 'b Heap) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b Heap"
where
  "foldM f [] s = return s"
  | "foldM f (x#xs) s = f x s \<guillemotright>= foldM f xs"
definition
  assert :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a Heap"
where
  "assert P x = (if P x then return x else raise (''assert''))"
lemma assert_cong [fundef_cong]:
  assumes "P = P'"
  assumes "\<And>x. P' x \<Longrightarrow> f x = f' x"
  shows "(assert P x >>= f) = (assert P' x >>= f')"
  using assms by (auto simp add: assert_def return_bind raise_bind)
hide (open) const heap execute
subsection {* Code generator setup *}
subsubsection {* Logical intermediate layer *}
definition
  Fail :: "message_string \<Rightarrow> exception"
where
  [code del]: "Fail s = Exn"
definition
  raise_exc :: "exception \<Rightarrow> 'a Heap"
where
  [code del]: "raise_exc e = raise []"
lemma raise_raise_exc [code, code inline]:
  "raise s = raise_exc (Fail (STR s))"
  unfolding Fail_def raise_exc_def raise_def ..
hide (open) const Fail raise_exc
subsubsection {* SML and OCaml *}
code_type Heap (SML "unit/ ->/ _")
code_const Heap (SML "raise/ (Fail/ \"bare Heap\")")
code_const "op \<guillemotright>=" (SML "!(fn/ f'_/ =>/ fn/ ()/ =>/ f'_/ (_/ ())/ ())")
code_const return (SML "!(fn/ ()/ =>/ _)")
code_const "Heap_Monad.Fail" (SML "Fail")
code_const "Heap_Monad.raise_exc" (SML "!(fn/ ()/ =>/ raise/ _)")
code_type Heap (OCaml "_")
code_const Heap (OCaml "failwith/ \"bare Heap\"")
code_const "op \<guillemotright>=" (OCaml "!(fun/ f'_/ ()/ ->/ f'_/ (_/ ())/ ())")
code_const return (OCaml "!(fun/ ()/ ->/ _)")
code_const "Heap_Monad.Fail" (OCaml "Failure")
code_const "Heap_Monad.raise_exc" (OCaml "!(fun/ ()/ ->/ raise/ _)")
setup {* let
  open Code_Thingol;
  fun lookup naming = the o Code_Thingol.lookup_const naming;
  fun imp_monad_bind'' bind' return' unit' ts =
    let
      val dummy_name = "";
      val dummy_type = ITyVar dummy_name;
      val dummy_case_term = IVar dummy_name;
      (*assumption: dummy values are not relevant for serialization*)
      val unitt = IConst (unit', ([], []));
      fun dest_abs ((v, ty) `|-> t, _) = ((v, ty), t)
        | dest_abs (t, ty) =
            let
              val vs = Code_Thingol.fold_varnames cons t [];
              val v = Name.variant vs "x";
              val ty' = (hd o fst o Code_Thingol.unfold_fun) ty;
            in ((v, ty'), t `$ IVar v) end;
      fun force (t as IConst (c, _) `$ t') = if c = return'
            then t' else t `$ unitt
        | force t = t `$ unitt;
      fun tr_bind' [(t1, _), (t2, ty2)] =
        let
          val ((v, ty), t) = dest_abs (t2, ty2);
        in ICase (((force t1, ty), [(IVar v, tr_bind'' t)]), dummy_case_term) end
      and tr_bind'' t = case Code_Thingol.unfold_app t
           of (IConst (c, (_, ty1 :: ty2 :: _)), [x1, x2]) => if c = bind'
                then tr_bind' [(x1, ty1), (x2, ty2)]
                else force t
            | _ => force t;
    in (dummy_name, dummy_type) `|-> ICase (((IVar dummy_name, dummy_type),
      [(unitt, tr_bind' ts)]), dummy_case_term) end
  and imp_monad_bind' bind' return' unit' (const as (c, (_, tys))) ts = if c = bind' then case (ts, tys)
     of ([t1, t2], ty1 :: ty2 :: _) => imp_monad_bind'' bind' return' unit' [(t1, ty1), (t2, ty2)]
      | ([t1, t2, t3], ty1 :: ty2 :: _) => imp_monad_bind'' bind' return' unit' [(t1, ty1), (t2, ty2)] `$ t3
      | (ts, _) => imp_monad_bind bind' return' unit' (eta_expand 2 (const, ts))
    else IConst const `$$ map (imp_monad_bind bind' return' unit') ts
  and imp_monad_bind bind' return' unit' (IConst const) = imp_monad_bind' bind' return' unit' const []
    | imp_monad_bind bind' return' unit' (t as IVar _) = t
    | imp_monad_bind bind' return' unit' (t as _ `$ _) = (case unfold_app t
       of (IConst const, ts) => imp_monad_bind' bind' return' unit' const ts
        | (t, ts) => imp_monad_bind bind' return' unit' t `$$ map (imp_monad_bind bind' return' unit') ts)
    | imp_monad_bind bind' return' unit' (v_ty `|-> t) = v_ty `|-> imp_monad_bind bind' return' unit' t
    | imp_monad_bind bind' return' unit' (ICase (((t, ty), pats), t0)) = ICase
        (((imp_monad_bind bind' return' unit' t, ty), (map o pairself) (imp_monad_bind bind' return' unit') pats), imp_monad_bind bind' return' unit' t0);
   fun imp_program naming = (Graph.map_nodes o map_terms_stmt)
     (imp_monad_bind (lookup naming @{const_name bindM})
       (lookup naming @{const_name return})
       (lookup naming @{const_name Unity}));
in
  Code_Target.extend_target ("SML_imp", ("SML", imp_program))
  #> Code_Target.extend_target ("OCaml_imp", ("OCaml", imp_program))
end
*}
code_reserved OCaml Failure raise
subsubsection {* Haskell *}
text {* Adaption layer *}
code_include Haskell "STMonad"
{*import qualified Control.Monad;
import qualified Control.Monad.ST;
import qualified Data.STRef;
import qualified Data.Array.ST;
type RealWorld = Control.Monad.ST.RealWorld;
type ST s a = Control.Monad.ST.ST s a;
type STRef s a = Data.STRef.STRef s a;
type STArray s a = Data.Array.ST.STArray s Int a;
runST :: (forall s. ST s a) -> a;
runST s = Control.Monad.ST.runST s;
newSTRef = Data.STRef.newSTRef;
readSTRef = Data.STRef.readSTRef;
writeSTRef = Data.STRef.writeSTRef;
newArray :: (Int, Int) -> a -> ST s (STArray s a);
newArray = Data.Array.ST.newArray;
newListArray :: (Int, Int) -> [a] -> ST s (STArray s a);
newListArray = Data.Array.ST.newListArray;
lengthArray :: STArray s a -> ST s Int;
lengthArray a = Control.Monad.liftM snd (Data.Array.ST.getBounds a);
readArray :: STArray s a -> Int -> ST s a;
readArray = Data.Array.ST.readArray;
writeArray :: STArray s a -> Int -> a -> ST s ();
writeArray = Data.Array.ST.writeArray;*}
code_reserved Haskell RealWorld ST STRef Array
  runST
  newSTRef reasSTRef writeSTRef
  newArray newListArray lengthArray readArray writeArray
text {* Monad *}
code_type Heap (Haskell "ST/ RealWorld/ _")
code_const Heap (Haskell "error/ \"bare Heap\"")
code_monad "op \<guillemotright>=" Haskell
code_const return (Haskell "return")
code_const "Heap_Monad.Fail" (Haskell "_")
code_const "Heap_Monad.raise_exc" (Haskell "error")
end