(* Title: Provers/trancl.ML
Author: Oliver Kutter, TU Muenchen
Transitivity reasoner for transitive closures of relations
*)
(*
The packages provides tactics trancl_tac and rtrancl_tac that prove
goals of the form
(x,y) : r^+ and (x,y) : r^* (rtrancl_tac only)
from premises of the form
(x,y) : r, (x,y) : r^+ and (x,y) : r^* (rtrancl_tac only)
by reflexivity and transitivity. The relation r is determined by inspecting
the conclusion.
The package is implemented as an ML functor and thus not limited to
particular constructs for transitive and reflexive-transitive
closures, neither need relations be represented as sets of pairs. In
order to instantiate the package for transitive closure only, supply
dummy theorems to the additional rules for reflexive-transitive
closures, and don't use rtrancl_tac!
*)
signature TRANCL_ARITH =
sig
(* theorems for transitive closure *)
val r_into_trancl : thm
(* (a,b) : r ==> (a,b) : r^+ *)
val trancl_trans : thm
(* [| (a,b) : r^+ ; (b,c) : r^+ |] ==> (a,c) : r^+ *)
(* additional theorems for reflexive-transitive closure *)
val rtrancl_refl : thm
(* (a,a): r^* *)
val r_into_rtrancl : thm
(* (a,b) : r ==> (a,b) : r^* *)
val trancl_into_rtrancl : thm
(* (a,b) : r^+ ==> (a,b) : r^* *)
val rtrancl_trancl_trancl : thm
(* [| (a,b) : r^* ; (b,c) : r^+ |] ==> (a,c) : r^+ *)
val trancl_rtrancl_trancl : thm
(* [| (a,b) : r^+ ; (b,c) : r^* |] ==> (a,c) : r^+ *)
val rtrancl_trans : thm
(* [| (a,b) : r^* ; (b,c) : r^* |] ==> (a,c) : r^* *)
(* decomp: decompose a premise or conclusion
Returns one of the following:
NONE if not an instance of a relation,
SOME (x, y, r, s) if instance of a relation, where
x: left hand side argument, y: right hand side argument,
r: the relation,
s: the kind of closure, one of
"r": the relation itself,
"r^+": transitive closure of the relation,
"r^*": reflexive-transitive closure of the relation
*)
val decomp: term -> (term * term * term * string) option
end;
signature TRANCL_TAC =
sig
val trancl_tac: Proof.context -> int -> tactic
val rtrancl_tac: Proof.context -> int -> tactic
end;
functor Trancl_Tac(Cls: TRANCL_ARITH): TRANCL_TAC =
struct
datatype proof
= Asm of int
| Thm of proof list * thm;
exception Cannot; (* internal exception: raised if no proof can be found *)
fun decomp t = Option.map (fn (x, y, rel, r) =>
(Envir.beta_eta_contract x, Envir.beta_eta_contract y,
Envir.beta_eta_contract rel, r)) (Cls.decomp t);
fun prove thy r asms =
let
fun inst thm =
let val SOME (_, _, r', _) = decomp (concl_of thm)
in Drule.cterm_instantiate [(cterm_of thy r', cterm_of thy r)] thm end;
fun pr (Asm i) = nth asms i
| pr (Thm (prfs, thm)) = map pr prfs MRS inst thm;
in pr end;
(* Internal datatype for inequalities *)
datatype rel
= Trans of term * term * proof (* R^+ *)
| RTrans of term * term * proof; (* R^* *)
(* Misc functions for datatype rel *)
fun lower (Trans (x, _, _)) = x
| lower (RTrans (x,_,_)) = x;
fun upper (Trans (_, y, _)) = y
| upper (RTrans (_,y,_)) = y;
fun getprf (Trans (_, _, p)) = p
| getprf (RTrans (_,_, p)) = p;
(* ************************************************************************ *)
(* *)
(* mkasm_trancl Rel (t,n): term -> (term , int) -> rel list *)
(* *)
(* Analyse assumption t with index n with respect to relation Rel: *)
(* If t is of the form "(x, y) : Rel" (or Rel^+), translate to *)
(* an object (singleton list) of internal datatype rel. *)
(* Otherwise return empty list. *)
(* *)
(* ************************************************************************ *)
fun mkasm_trancl Rel (t, n) =
case decomp t of
SOME (x, y, rel,r) => if rel aconv Rel then
(case r of
"r" => [Trans (x,y, Thm([Asm n], Cls.r_into_trancl))]
| "r+" => [Trans (x,y, Asm n)]
| "r*" => []
| _ => error ("trancl_tac: unknown relation symbol"))
else []
| NONE => [];
(* ************************************************************************ *)
(* *)
(* mkasm_rtrancl Rel (t,n): term -> (term , int) -> rel list *)
(* *)
(* Analyse assumption t with index n with respect to relation Rel: *)
(* If t is of the form "(x, y) : Rel" (or Rel^+ or Rel^* ), translate to *)
(* an object (singleton list) of internal datatype rel. *)
(* Otherwise return empty list. *)
(* *)
(* ************************************************************************ *)
fun mkasm_rtrancl Rel (t, n) =
case decomp t of
SOME (x, y, rel, r) => if rel aconv Rel then
(case r of
"r" => [ Trans (x,y, Thm([Asm n], Cls.r_into_trancl))]
| "r+" => [ Trans (x,y, Asm n)]
| "r*" => [ RTrans(x,y, Asm n)]
| _ => error ("rtrancl_tac: unknown relation symbol" ))
else []
| NONE => [];
(* ************************************************************************ *)
(* *)
(* mkconcl_trancl t: term -> (term, rel, proof) *)
(* mkconcl_rtrancl t: term -> (term, rel, proof) *)
(* *)
(* Analyse conclusion t: *)
(* - must be of form "(x, y) : r^+ (or r^* for rtrancl) *)
(* - returns r *)
(* - conclusion in internal form *)
(* - proof object *)
(* *)
(* ************************************************************************ *)
fun mkconcl_trancl t =
case decomp t of
SOME (x, y, rel, r) => (case r of
"r+" => (rel, Trans (x,y, Asm ~1), Asm 0)
| _ => raise Cannot)
| NONE => raise Cannot;
fun mkconcl_rtrancl t =
case decomp t of
SOME (x, y, rel,r ) => (case r of
"r+" => (rel, Trans (x,y, Asm ~1), Asm 0)
| "r*" => (rel, RTrans (x,y, Asm ~1), Asm 0)
| _ => raise Cannot)
| NONE => raise Cannot;
(* ************************************************************************ *)
(* *)
(* makeStep (r1, r2): rel * rel -> rel *)
(* *)
(* Apply transitivity to r1 and r2, obtaining a new element of r^+ or r^*, *)
(* according the following rules: *)
(* *)
(* ( (a, b) : r^+ , (b,c) : r^+ ) --> (a,c) : r^+ *)
(* ( (a, b) : r^* , (b,c) : r^+ ) --> (a,c) : r^+ *)
(* ( (a, b) : r^+ , (b,c) : r^* ) --> (a,c) : r^+ *)
(* ( (a, b) : r^* , (b,c) : r^* ) --> (a,c) : r^* *)
(* *)
(* ************************************************************************ *)
fun makeStep (Trans (a,_,p), Trans(_,c,q)) = Trans (a,c, Thm ([p,q], Cls.trancl_trans))
(* refl. + trans. cls. rules *)
| makeStep (RTrans (a,_,p), Trans(_,c,q)) = Trans (a,c, Thm ([p,q], Cls.rtrancl_trancl_trancl))
| makeStep (Trans (a,_,p), RTrans(_,c,q)) = Trans (a,c, Thm ([p,q], Cls.trancl_rtrancl_trancl))
| makeStep (RTrans (a,_,p), RTrans(_,c,q)) = RTrans (a,c, Thm ([p,q], Cls.rtrancl_trans));
(* ******************************************************************* *)
(* *)
(* transPath (Clslist, Cls): (rel list * rel) -> rel *)
(* *)
(* If a path represented by a list of elements of type rel is found, *)
(* this needs to be contracted to a single element of type rel. *)
(* Prior to each transitivity step it is checked whether the step is *)
(* valid. *)
(* *)
(* ******************************************************************* *)
fun transPath ([],acc) = acc
| transPath (x::xs,acc) = transPath (xs, makeStep(acc,x))
(* ********************************************************************* *)
(* Graph functions *)
(* ********************************************************************* *)
(* *********************************************************** *)
(* Functions for constructing graphs *)
(* *********************************************************** *)
fun addEdge (v,d,[]) = [(v,d)]
| addEdge (v,d,((u,dl)::el)) = if v aconv u then ((v,d@dl)::el)
else (u,dl):: (addEdge(v,d,el));
(* ********************************************************************** *)
(* *)
(* mkGraph constructs from a list of objects of type rel a graph g *)
(* and a list of all edges with label r+. *)
(* *)
(* ********************************************************************** *)
fun mkGraph [] = ([],[])
| mkGraph ys =
let
fun buildGraph ([],g,zs) = (g,zs)
| buildGraph (x::xs, g, zs) =
case x of (Trans (_,_,_)) =>
buildGraph (xs, addEdge((upper x), [],(addEdge ((lower x),[((upper x),x)],g))), x::zs)
| _ => buildGraph (xs, addEdge((upper x), [],(addEdge ((lower x),[((upper x),x)],g))), zs)
in buildGraph (ys, [], []) end;
(* *********************************************************************** *)
(* *)
(* adjacent g u : (''a * 'b list ) list -> ''a -> 'b list *)
(* *)
(* List of successors of u in graph g *)
(* *)
(* *********************************************************************** *)
fun adjacent eq_comp ((v,adj)::el) u =
if eq_comp (u, v) then adj else adjacent eq_comp el u
| adjacent _ [] _ = []
(* *********************************************************************** *)
(* *)
(* dfs eq_comp g u v: *)
(* ('a * 'a -> bool) -> ('a *( 'a * rel) list) list -> *)
(* 'a -> 'a -> (bool * ('a * rel) list) *)
(* *)
(* Depth first search of v from u. *)
(* Returns (true, path(u, v)) if successful, otherwise (false, []). *)
(* *)
(* *********************************************************************** *)
fun dfs eq_comp g u v =
let
val pred = Unsynchronized.ref [];
val visited = Unsynchronized.ref [];
fun been_visited v = exists (fn w => eq_comp (w, v)) (!visited)
fun dfs_visit u' =
let val _ = visited := u' :: (!visited)
fun update (x,l) = let val _ = pred := (x,l) ::(!pred) in () end;
in if been_visited v then ()
else (app (fn (v',l) => if been_visited v' then () else (
update (v',l);
dfs_visit v'; ()) )) (adjacent eq_comp g u')
end
in
dfs_visit u;
if (been_visited v) then (true, (!pred)) else (false , [])
end;
(* *********************************************************************** *)
(* *)
(* transpose g: *)
(* (''a * ''a list) list -> (''a * ''a list) list *)
(* *)
(* Computes transposed graph g' from g *)
(* by reversing all edges u -> v to v -> u *)
(* *)
(* *********************************************************************** *)
fun transpose eq_comp g =
let
(* Compute list of reversed edges for each adjacency list *)
fun flip (u,(v,l)::el) = (v,(u,l)) :: flip (u,el)
| flip (_,[]) = []
(* Compute adjacency list for node u from the list of edges
and return a likewise reduced list of edges. The list of edges
is searches for edges starting from u, and these edges are removed. *)
fun gather (u,(v,w)::el) =
let
val (adj,edges) = gather (u,el)
in
if eq_comp (u, v) then (w::adj,edges)
else (adj,(v,w)::edges)
end
| gather (_,[]) = ([],[])
(* For every node in the input graph, call gather to find all reachable
nodes in the list of edges *)
fun assemble ((u,_)::el) edges =
let val (adj,edges) = gather (u,edges)
in (u,adj) :: assemble el edges
end
| assemble [] _ = []
(* Compute, for each adjacency list, the list with reversed edges,
and concatenate these lists. *)
val flipped = maps flip g
in assemble g flipped end
(* *********************************************************************** *)
(* *)
(* dfs_reachable eq_comp g u: *)
(* (int * int list) list -> int -> int list *)
(* *)
(* Computes list of all nodes reachable from u in g. *)
(* *)
(* *********************************************************************** *)
fun dfs_reachable eq_comp g u =
let
(* List of vertices which have been visited. *)
val visited = Unsynchronized.ref [];
fun been_visited v = exists (fn w => eq_comp (w, v)) (!visited)
fun dfs_visit g u =
let
val _ = visited := u :: !visited
val descendents =
List.foldr (fn ((v,l),ds) => if been_visited v then ds
else v :: dfs_visit g v @ ds)
[] (adjacent eq_comp g u)
in descendents end
in u :: dfs_visit g u end;
(* *********************************************************************** *)
(* *)
(* dfs_term_reachable g u: *)
(* (term * term list) list -> term -> term list *)
(* *)
(* Computes list of all nodes reachable from u in g. *)
(* *)
(* *********************************************************************** *)
fun dfs_term_reachable g u = dfs_reachable (op aconv) g u;
(* ************************************************************************ *)
(* *)
(* findPath x y g: Term.term -> Term.term -> *)
(* (Term.term * (Term.term * rel list) list) -> *)
(* (bool, rel list) *)
(* *)
(* Searches a path from vertex x to vertex y in Graph g, returns true and *)
(* the list of edges if path is found, otherwise false and nil. *)
(* *)
(* ************************************************************************ *)
fun findPath x y g =
let
val (found, tmp) = dfs (op aconv) g x y ;
val pred = map snd tmp;
fun path x y =
let
(* find predecessor u of node v and the edge u -> v *)
fun lookup v [] = raise Cannot
| lookup v (e::es) = if (upper e) aconv v then e else lookup v es;
(* traverse path backwards and return list of visited edges *)
fun rev_path v =
let val l = lookup v pred
val u = lower l;
in
if u aconv x then [l] else (rev_path u) @ [l]
end
in rev_path y end;
in
if found then ( (found, (path x y) )) else (found,[])
end;
(* ************************************************************************ *)
(* *)
(* findRtranclProof g tranclEdges subgoal: *)
(* (Term.term * (Term.term * rel list) list) -> rel -> proof list *)
(* *)
(* Searches in graph g a proof for subgoal. *)
(* *)
(* ************************************************************************ *)
fun findRtranclProof g tranclEdges subgoal =
case subgoal of (RTrans (x,y,_)) => if x aconv y then [Thm ([], Cls.rtrancl_refl)] else (
let val (found, path) = findPath (lower subgoal) (upper subgoal) g
in
if found then (
let val path' = (transPath (tl path, hd path))
in
case path' of (Trans (_,_,p)) => [Thm ([p], Cls.trancl_into_rtrancl )]
| _ => [getprf path']
end
)
else raise Cannot
end
)
| (Trans (x,y,_)) => (
let
val Vx = dfs_term_reachable g x;
val g' = transpose (op aconv) g;
val Vy = dfs_term_reachable g' y;
fun processTranclEdges [] = raise Cannot
| processTranclEdges (e::es) =
if member (op =) Vx (upper e) andalso member (op =) Vx (lower e)
andalso member (op =) Vy (upper e) andalso member (op =) Vy (lower e)
then (
if (lower e) aconv x then (
if (upper e) aconv y then (
[(getprf e)]
)
else (
let
val (found,path) = findPath (upper e) y g
in
if found then (
[getprf (transPath (path, e))]
) else processTranclEdges es
end
)
)
else if (upper e) aconv y then (
let val (xufound,xupath) = findPath x (lower e) g
in
if xufound then (
let val xuRTranclEdge = transPath (tl xupath, hd xupath)
val xyTranclEdge = makeStep(xuRTranclEdge,e)
in [getprf xyTranclEdge] end
) else processTranclEdges es
end
)
else (
let val (xufound,xupath) = findPath x (lower e) g
val (vyfound,vypath) = findPath (upper e) y g
in
if xufound then (
if vyfound then (
let val xuRTranclEdge = transPath (tl xupath, hd xupath)
val vyRTranclEdge = transPath (tl vypath, hd vypath)
val xyTranclEdge = makeStep (makeStep(xuRTranclEdge,e),vyRTranclEdge)
in [getprf xyTranclEdge] end
) else processTranclEdges es
)
else processTranclEdges es
end
)
)
else processTranclEdges es;
in processTranclEdges tranclEdges end )
| _ => raise Cannot
fun solveTrancl (asms, concl) =
let val (g,_) = mkGraph asms
in
let val (_, subgoal, _) = mkconcl_trancl concl
val (found, path) = findPath (lower subgoal) (upper subgoal) g
in
if found then [getprf (transPath (tl path, hd path))]
else raise Cannot
end
end;
fun solveRtrancl (asms, concl) =
let val (g,tranclEdges) = mkGraph asms
val (_, subgoal, _) = mkconcl_rtrancl concl
in
findRtranclProof g tranclEdges subgoal
end;
fun trancl_tac ctxt = SUBGOAL (fn (A, n) => fn st =>
let
val thy = Proof_Context.theory_of ctxt;
val Hs = Logic.strip_assums_hyp A;
val C = Logic.strip_assums_concl A;
val (rel, subgoals, prf) = mkconcl_trancl C;
val prems = flat (map_index (mkasm_trancl rel o swap) Hs);
val prfs = solveTrancl (prems, C);
in
Subgoal.FOCUS (fn {prems, concl, ...} =>
let
val SOME (_, _, rel', _) = decomp (term_of concl);
val thms = map (prove thy rel' prems) prfs
in rtac (prove thy rel' thms prf) 1 end) ctxt n st
end
handle Cannot => Seq.empty);
fun rtrancl_tac ctxt = SUBGOAL (fn (A, n) => fn st =>
let
val thy = Proof_Context.theory_of ctxt;
val Hs = Logic.strip_assums_hyp A;
val C = Logic.strip_assums_concl A;
val (rel, subgoals, prf) = mkconcl_rtrancl C;
val prems = flat (map_index (mkasm_rtrancl rel o swap) Hs);
val prfs = solveRtrancl (prems, C);
in
Subgoal.FOCUS (fn {prems, concl, ...} =>
let
val SOME (_, _, rel', _) = decomp (term_of concl);
val thms = map (prove thy rel' prems) prfs
in rtac (prove thy rel' thms prf) 1 end) ctxt n st
end
handle Cannot => Seq.empty | General.Subscript => Seq.empty);
end;