(* Title: Pure/codegen.ML
Author: Stefan Berghofer, TU Muenchen
Generic code generator.
*)
signature CODEGEN =
sig
val quiet_mode : bool Unsynchronized.ref
val message : string -> unit
val margin : int Unsynchronized.ref
val string_of : Pretty.T -> string
val str : string -> Pretty.T
datatype 'a mixfix =
Arg
| Ignore
| Module
| Pretty of Pretty.T
| Quote of 'a;
type deftab
type node
type codegr
type 'a codegen
val add_codegen: string -> term codegen -> theory -> theory
val add_tycodegen: string -> typ codegen -> theory -> theory
val add_preprocessor: (theory -> thm list -> thm list) -> theory -> theory
val preprocess: theory -> thm list -> thm list
val preprocess_term: theory -> term -> term
val print_codegens: theory -> unit
val generate_code: theory -> string list -> string list -> string -> (string * string) list ->
(string * string) list * codegr
val generate_code_i: theory -> string list -> string list -> string -> (string * term) list ->
(string * string) list * codegr
val assoc_const: string * (term mixfix list *
(string * string) list) -> theory -> theory
val assoc_const_i: (string * typ) * (term mixfix list *
(string * string) list) -> theory -> theory
val assoc_type: xstring * (typ mixfix list *
(string * string) list) -> theory -> theory
val get_assoc_code: theory -> string * typ ->
(term mixfix list * (string * string) list) option
val get_assoc_type: theory -> string ->
(typ mixfix list * (string * string) list) option
val codegen_error: codegr -> string -> string -> 'a
val invoke_codegen: theory -> string list -> deftab -> string -> string -> bool ->
term -> codegr -> Pretty.T * codegr
val invoke_tycodegen: theory -> string list -> deftab -> string -> string -> bool ->
typ -> codegr -> Pretty.T * codegr
val mk_id: string -> string
val mk_qual_id: string -> string * string -> string
val mk_const_id: string -> string -> codegr -> (string * string) * codegr
val get_const_id: codegr -> string -> string * string
val mk_type_id: string -> string -> codegr -> (string * string) * codegr
val get_type_id: codegr -> string -> string * string
val thyname_of_type: theory -> string -> string
val thyname_of_const: theory -> string -> string
val rename_terms: term list -> term list
val rename_term: term -> term
val new_names: term -> string list -> string list
val new_name: term -> string -> string
val if_library: string list -> 'a -> 'a -> 'a
val get_defn: theory -> deftab -> string -> typ ->
((typ * (string * thm)) * int option) option
val is_instance: typ -> typ -> bool
val parens: Pretty.T -> Pretty.T
val mk_app: bool -> Pretty.T -> Pretty.T list -> Pretty.T
val mk_tuple: Pretty.T list -> Pretty.T
val mk_let: (Pretty.T * Pretty.T) list -> Pretty.T -> Pretty.T
val eta_expand: term -> term list -> int -> term
val strip_tname: string -> string
val mk_type: bool -> typ -> Pretty.T
val mk_term_of: codegr -> string -> bool -> typ -> Pretty.T
val mk_gen: codegr -> string -> bool -> string list -> string -> typ -> Pretty.T
val poke_test_fn: (int -> term list option) -> unit
val poke_eval_fn: (unit -> term) -> unit
val test_term: Proof.context -> term -> int -> term list option
val eval_term: Proof.context -> term -> term
val evaluation_conv: Proof.context -> conv
val parse_mixfix: (string -> 'a) -> string -> 'a mixfix list
val quotes_of: 'a mixfix list -> 'a list
val num_args_of: 'a mixfix list -> int
val replace_quotes: 'b list -> 'a mixfix list -> 'b mixfix list
val mk_deftab: theory -> deftab
val map_unfold: (simpset -> simpset) -> theory -> theory
val add_unfold: thm -> theory -> theory
val del_unfold: thm -> theory -> theory
val get_node: codegr -> string -> node
val add_edge: string * string -> codegr -> codegr
val add_edge_acyclic: string * string -> codegr -> codegr
val del_nodes: string list -> codegr -> codegr
val map_node: string -> (node -> node) -> codegr -> codegr
val new_node: string * node -> codegr -> codegr
val setup: theory -> theory
end;
structure Codegen : CODEGEN =
struct
val quiet_mode = Unsynchronized.ref true;
fun message s = if !quiet_mode then () else writeln s;
val margin = Unsynchronized.ref 80;
fun string_of p = Print_Mode.setmp [] (Pretty.string_of_margin (!margin)) p;
val str = Print_Mode.setmp [] Pretty.str;
(**** Mixfix syntax ****)
datatype 'a mixfix =
Arg
| Ignore
| Module
| Pretty of Pretty.T
| Quote of 'a;
fun is_arg Arg = true
| is_arg Ignore = true
| is_arg _ = false;
fun quotes_of [] = []
| quotes_of (Quote q :: ms) = q :: quotes_of ms
| quotes_of (_ :: ms) = quotes_of ms;
fun args_of [] xs = ([], xs)
| args_of (Arg :: ms) (x :: xs) = apfst (cons x) (args_of ms xs)
| args_of (Ignore :: ms) (_ :: xs) = args_of ms xs
| args_of (_ :: ms) xs = args_of ms xs;
fun num_args_of x = length (filter is_arg x);
(**** theory data ****)
(* preprocessed definition table *)
type deftab =
(typ * (* type of constant *)
(string * (* name of theory containing definition of constant *)
thm)) (* definition theorem *)
list Symtab.table;
(* code dependency graph *)
type nametab = (string * string) Symtab.table * unit Symtab.table;
fun merge_nametabs ((tab, used) : nametab, (tab', used')) =
(Symtab.merge op = (tab, tab'), Symtab.merge op = (used, used'));
type node =
(exn option * (* slot for arbitrary data *)
string * (* name of structure containing piece of code *)
string); (* piece of code *)
type codegr =
node Graph.T *
(nametab * (* table for assigned constant names *)
nametab); (* table for assigned type names *)
val emptygr : codegr = (Graph.empty,
((Symtab.empty, Symtab.empty), (Symtab.empty, Symtab.empty)));
(* type of code generators *)
type 'a codegen =
theory -> (* theory in which generate_code was called *)
string list -> (* mode *)
deftab -> (* definition table (for efficiency) *)
string -> (* node name of caller (for recording dependencies) *)
string -> (* module name of caller (for modular code generation) *)
bool -> (* whether to parenthesize generated expression *)
'a -> (* item to generate code from *)
codegr -> (* code dependency graph *)
(Pretty.T * codegr) option;
(* theory data *)
structure CodegenData = Theory_Data
(
type T =
{codegens : (string * term codegen) list,
tycodegens : (string * typ codegen) list,
consts : ((string * typ) * (term mixfix list * (string * string) list)) list,
types : (string * (typ mixfix list * (string * string) list)) list,
preprocs: (stamp * (theory -> thm list -> thm list)) list,
modules: codegr Symtab.table};
val empty =
{codegens = [], tycodegens = [], consts = [], types = [],
preprocs = [], modules = Symtab.empty};
val extend = I;
fun merge
({codegens = codegens1, tycodegens = tycodegens1,
consts = consts1, types = types1,
preprocs = preprocs1, modules = modules1} : T,
{codegens = codegens2, tycodegens = tycodegens2,
consts = consts2, types = types2,
preprocs = preprocs2, modules = modules2}) : T =
{codegens = AList.merge (op =) (K true) (codegens1, codegens2),
tycodegens = AList.merge (op =) (K true) (tycodegens1, tycodegens2),
consts = AList.merge (op =) (K true) (consts1, consts2),
types = AList.merge (op =) (K true) (types1, types2),
preprocs = AList.merge (op =) (K true) (preprocs1, preprocs2),
modules = Symtab.merge (K true) (modules1, modules2)};
);
fun print_codegens thy =
let val {codegens, tycodegens, ...} = CodegenData.get thy in
Pretty.writeln (Pretty.chunks
[Pretty.strs ("term code generators:" :: map fst codegens),
Pretty.strs ("type code generators:" :: map fst tycodegens)])
end;
(**** access modules ****)
fun get_modules thy = #modules (CodegenData.get thy);
fun map_modules f thy =
let val {codegens, tycodegens, consts, types, preprocs, modules} =
CodegenData.get thy;
in CodegenData.put {codegens = codegens, tycodegens = tycodegens,
consts = consts, types = types, preprocs = preprocs,
modules = f modules} thy
end;
(**** add new code generators to theory ****)
fun add_codegen name f thy =
let val {codegens, tycodegens, consts, types, preprocs, modules} =
CodegenData.get thy
in (case AList.lookup (op =) codegens name of
NONE => CodegenData.put {codegens = (name, f) :: codegens,
tycodegens = tycodegens, consts = consts, types = types,
preprocs = preprocs, modules = modules} thy
| SOME _ => error ("Code generator " ^ name ^ " already declared"))
end;
fun add_tycodegen name f thy =
let val {codegens, tycodegens, consts, types, preprocs, modules} =
CodegenData.get thy
in (case AList.lookup (op =) tycodegens name of
NONE => CodegenData.put {tycodegens = (name, f) :: tycodegens,
codegens = codegens, consts = consts, types = types,
preprocs = preprocs, modules = modules} thy
| SOME _ => error ("Code generator " ^ name ^ " already declared"))
end;
(**** preprocessors ****)
fun add_preprocessor p thy =
let val {codegens, tycodegens, consts, types, preprocs, modules} =
CodegenData.get thy
in CodegenData.put {tycodegens = tycodegens,
codegens = codegens, consts = consts, types = types,
preprocs = (stamp (), p) :: preprocs,
modules = modules} thy
end;
fun preprocess thy =
let val {preprocs, ...} = CodegenData.get thy
in fold (fn (_, f) => f thy) preprocs end;
fun preprocess_term thy t =
let
val x = Free (singleton (Name.variant_list (OldTerm.add_term_names (t, []))) "x", fastype_of t);
(* fake definition *)
val eq = Skip_Proof.make_thm thy (Logic.mk_equals (x, t));
fun err () = error "preprocess_term: bad preprocessor"
in case map prop_of (preprocess thy [eq]) of
[Const ("==", _) $ x' $ t'] => if x = x' then t' else err ()
| _ => err ()
end;
structure UnfoldData = Theory_Data
(
type T = simpset;
val empty = empty_ss;
val extend = I;
val merge = merge_ss;
);
val map_unfold = UnfoldData.map;
val add_unfold = map_unfold o Simplifier.add_simp;
val del_unfold = map_unfold o Simplifier.del_simp;
fun unfold_preprocessor thy =
let val ss = Simplifier.global_context thy (UnfoldData.get thy)
in map (Thm.transfer thy #> Simplifier.full_simplify ss) end;
(**** associate constants with target language code ****)
fun gen_assoc_const prep_const (raw_const, syn) thy =
let
val {codegens, tycodegens, consts, types, preprocs, modules} =
CodegenData.get thy;
val (cname, T) = prep_const thy raw_const;
in
if num_args_of (fst syn) > length (binder_types T) then
error ("More arguments than in corresponding type of " ^ cname)
else case AList.lookup (op =) consts (cname, T) of
NONE => CodegenData.put {codegens = codegens,
tycodegens = tycodegens,
consts = ((cname, T), syn) :: consts,
types = types, preprocs = preprocs,
modules = modules} thy
| SOME _ => error ("Constant " ^ cname ^ " already associated with code")
end;
val assoc_const_i = gen_assoc_const (K I);
val assoc_const = gen_assoc_const Code.read_bare_const;
(**** associate types with target language types ****)
fun assoc_type (s, syn) thy =
let
val {codegens, tycodegens, consts, types, preprocs, modules} =
CodegenData.get thy;
val tc = Sign.intern_type thy s;
in
case Symtab.lookup (snd (#types (Type.rep_tsig (Sign.tsig_of thy)))) tc of
SOME (Type.LogicalType i) =>
if num_args_of (fst syn) > i then
error ("More arguments than corresponding type constructor " ^ s)
else
(case AList.lookup (op =) types tc of
NONE => CodegenData.put {codegens = codegens,
tycodegens = tycodegens, consts = consts,
types = (tc, syn) :: types,
preprocs = preprocs, modules = modules} thy
| SOME _ => error ("Type " ^ tc ^ " already associated with code"))
| _ => error ("Not a type constructor: " ^ s)
end;
fun get_assoc_type thy = AList.lookup (op =) ((#types o CodegenData.get) thy);
(**** make valid ML identifiers ****)
fun is_ascii_letdig x = Symbol.is_ascii_letter x orelse
Symbol.is_ascii_digit x orelse Symbol.is_ascii_quasi x;
fun dest_sym s =
(case split_last (snd (take_prefix (fn c => c = "\\") (raw_explode s))) of
("<" :: "^" :: xs, ">") => (true, implode xs)
| ("<" :: xs, ">") => (false, implode xs)
| _ => raise Fail "dest_sym");
fun mk_id s = if s = "" then "" else
let
fun check_str [] = []
| check_str xs = (case take_prefix is_ascii_letdig xs of
([], " " :: zs) => check_str zs
| ([], z :: zs) =>
if size z = 1 then string_of_int (ord z) :: check_str zs
else (case dest_sym z of
(true, "isub") => check_str zs
| (true, "isup") => "" :: check_str zs
| (ctrl, s') => (if ctrl then "ctrl_" ^ s' else s') :: check_str zs)
| (ys, zs) => implode ys :: check_str zs);
val s' = space_implode "_" (maps (check_str o Symbol.explode) (Long_Name.explode s))
in
if Symbol.is_ascii_letter (hd (raw_explode s')) then s' else "id_" ^ s'
end;
fun mk_long_id (p as (tab, used)) module s =
let
fun find_name [] = raise Fail "mk_long_id"
| find_name (ys :: yss) =
let
val s' = Long_Name.implode ys
val s'' = Long_Name.append module s'
in case Symtab.lookup used s'' of
NONE => ((module, s'),
(Symtab.update_new (s, (module, s')) tab,
Symtab.update_new (s'', ()) used))
| SOME _ => find_name yss
end
in case Symtab.lookup tab s of
NONE => find_name (Library.suffixes1 (Long_Name.explode s))
| SOME name => (name, p)
end;
(* module: module name for caller *)
(* module': module name for callee *)
(* if caller and callee reside in different modules, use qualified access *)
fun mk_qual_id module (module', s) =
if module = module' orelse module' = "" then s else module' ^ "." ^ s;
fun mk_const_id module cname (gr, (tab1, tab2)) =
let
val ((module, s), tab1') = mk_long_id tab1 module cname
val s' = mk_id s;
val s'' = if ML_Syntax.is_reserved s' then s' ^ "_const" else s'
in (((module, s'')), (gr, (tab1', tab2))) end;
fun get_const_id (gr, (tab1, tab2)) cname =
case Symtab.lookup (fst tab1) cname of
NONE => error ("get_const_id: no such constant: " ^ quote cname)
| SOME (module, s) =>
let
val s' = mk_id s;
val s'' = if ML_Syntax.is_reserved s' then s' ^ "_const" else s'
in (module, s'') end;
fun mk_type_id module tyname (gr, (tab1, tab2)) =
let
val ((module, s), tab2') = mk_long_id tab2 module tyname
val s' = mk_id s;
val s'' = if ML_Syntax.is_reserved s' then s' ^ "_type" else s'
in ((module, s''), (gr, (tab1, tab2'))) end;
fun get_type_id (gr, (tab1, tab2)) tyname =
case Symtab.lookup (fst tab2) tyname of
NONE => error ("get_type_id: no such type: " ^ quote tyname)
| SOME (module, s) =>
let
val s' = mk_id s;
val s'' = if ML_Syntax.is_reserved s' then s' ^ "_type" else s'
in (module, s'') end;
fun get_type_id' f tab tyname = apsnd f (get_type_id tab tyname);
fun get_node (gr, x) k = Graph.get_node gr k;
fun add_edge e (gr, x) = (Graph.add_edge e gr, x);
fun add_edge_acyclic e (gr, x) = (Graph.add_edge_acyclic e gr, x);
fun del_nodes ks (gr, x) = (Graph.del_nodes ks gr, x);
fun map_node k f (gr, x) = (Graph.map_node k f gr, x);
fun new_node p (gr, x) = (Graph.new_node p gr, x);
fun thyname_of_type thy = #theory_name o Name_Space.the_entry (Sign.type_space thy);
fun thyname_of_const thy = #theory_name o Name_Space.the_entry (Sign.const_space thy);
fun rename_terms ts =
let
val names = List.foldr OldTerm.add_term_names
(map (fst o fst) (rev (fold Term.add_vars ts []))) ts;
val reserved = filter ML_Syntax.is_reserved names;
val (illegal, alt_names) = split_list (map_filter (fn s =>
let val s' = mk_id s in if s = s' then NONE else SOME (s, s') end) names)
val ps = (reserved @ illegal) ~~
Name.variant_list names (map (suffix "'") reserved @ alt_names);
fun rename_id s = AList.lookup (op =) ps s |> the_default s;
fun rename (Var ((a, i), T)) = Var ((rename_id a, i), T)
| rename (Free (a, T)) = Free (rename_id a, T)
| rename (Abs (s, T, t)) = Abs (s, T, rename t)
| rename (t $ u) = rename t $ rename u
| rename t = t;
in
map rename ts
end;
val rename_term = hd o rename_terms o single;
(**** retrieve definition of constant ****)
fun is_instance T1 T2 =
Type.raw_instance (T1, if null (OldTerm.typ_tfrees T2) then T2 else Logic.varifyT_global T2);
fun get_assoc_code thy (s, T) = Option.map snd (find_first (fn ((s', T'), _) =>
s = s' andalso is_instance T T') (#consts (CodegenData.get thy)));
fun get_aux_code mode xs = map_filter (fn (m, code) =>
if m = "" orelse member (op =) mode m then SOME code else NONE) xs;
fun dest_prim_def t =
let
val (lhs, rhs) = Logic.dest_equals t;
val (c, args) = strip_comb lhs;
val (s, T) = dest_Const c
in if forall is_Var args then SOME (s, (T, (args, rhs))) else NONE
end handle TERM _ => NONE;
fun mk_deftab thy =
let
val axmss =
map (fn thy' => (Context.theory_name thy', Theory.axiom_table thy'))
(Theory.nodes_of thy);
fun add_def thyname (name, t) =
(case dest_prim_def t of
NONE => I
| SOME (s, (T, _)) => Symtab.map_default (s, [])
(cons (T, (thyname, Thm.axiom thy name))));
in
fold (fn (thyname, axms) => Symtab.fold (add_def thyname) axms) axmss Symtab.empty
end;
fun prep_prim_def thy thm =
let
val prop = case preprocess thy [thm]
of [thm'] => Thm.prop_of thm'
| _ => error "mk_deftab: bad preprocessor"
in ((Option.map o apsnd o apsnd)
(fn (args, rhs) => split_last (rename_terms (args @ [rhs]))) o dest_prim_def) prop
end;
fun get_defn thy defs s T = (case Symtab.lookup defs s of
NONE => NONE
| SOME ds =>
let val i = find_index (is_instance T o fst) ds
in if i >= 0 then
SOME (nth ds i, if length ds = 1 then NONE else SOME i)
else NONE
end);
(**** invoke suitable code generator for term / type ****)
fun codegen_error (gr, _) dep s =
error (s ^ "\nrequired by:\n" ^ commas (Graph.all_succs gr [dep]));
fun invoke_codegen thy mode defs dep module brack t gr = (case get_first
(fn (_, f) => f thy mode defs dep module brack t gr) (#codegens (CodegenData.get thy)) of
NONE => codegen_error gr dep ("Unable to generate code for term:\n" ^
Syntax.string_of_term_global thy t)
| SOME x => x);
fun invoke_tycodegen thy mode defs dep module brack T gr = (case get_first
(fn (_, f) => f thy mode defs dep module brack T gr ) (#tycodegens (CodegenData.get thy)) of
NONE => codegen_error gr dep ("Unable to generate code for type:\n" ^
Syntax.string_of_typ_global thy T)
| SOME x => x);
(**** code generator for mixfix expressions ****)
fun parens p = Pretty.block [str "(", p, str ")"];
fun pretty_fn [] p = [p]
| pretty_fn (x::xs) p = str ("fn " ^ x ^ " =>") ::
Pretty.brk 1 :: pretty_fn xs p;
fun pretty_mixfix _ _ [] [] _ = []
| pretty_mixfix module module' (Arg :: ms) (p :: ps) qs =
p :: pretty_mixfix module module' ms ps qs
| pretty_mixfix module module' (Ignore :: ms) ps qs =
pretty_mixfix module module' ms ps qs
| pretty_mixfix module module' (Module :: ms) ps qs =
(if module <> module'
then cons (str (module' ^ ".")) else I)
(pretty_mixfix module module' ms ps qs)
| pretty_mixfix module module' (Pretty p :: ms) ps qs =
p :: pretty_mixfix module module' ms ps qs
| pretty_mixfix module module' (Quote _ :: ms) ps (q :: qs) =
q :: pretty_mixfix module module' ms ps qs;
fun replace_quotes [] [] = []
| replace_quotes xs (Arg :: ms) =
Arg :: replace_quotes xs ms
| replace_quotes xs (Ignore :: ms) =
Ignore :: replace_quotes xs ms
| replace_quotes xs (Module :: ms) =
Module :: replace_quotes xs ms
| replace_quotes xs (Pretty p :: ms) =
Pretty p :: replace_quotes xs ms
| replace_quotes (x::xs) (Quote _ :: ms) =
Quote x :: replace_quotes xs ms;
(**** default code generators ****)
fun eta_expand t ts i =
let
val k = length ts;
val Ts = drop k (binder_types (fastype_of t));
val j = i - k
in
List.foldr (fn (T, t) => Abs ("x", T, t))
(list_comb (t, ts @ map Bound (j-1 downto 0))) (take j Ts)
end;
fun mk_app _ p [] = p
| mk_app brack p ps = if brack then
Pretty.block (str "(" ::
separate (Pretty.brk 1) (p :: ps) @ [str ")"])
else Pretty.block (separate (Pretty.brk 1) (p :: ps));
fun new_names t xs = Name.variant_list
(union (op =) (map (fst o fst o dest_Var) (OldTerm.term_vars t))
(OldTerm.add_term_names (t, ML_Syntax.reserved_names))) (map mk_id xs);
fun new_name t x = hd (new_names t [x]);
fun if_library mode x y = if member (op =) mode "library" then x else y;
fun default_codegen thy mode defs dep module brack t gr =
let
val (u, ts) = strip_comb t;
fun codegens brack = fold_map (invoke_codegen thy mode defs dep module brack)
in (case u of
Var ((s, i), T) =>
let
val (ps, gr') = codegens true ts gr;
val (_, gr'') = invoke_tycodegen thy mode defs dep module false T gr'
in SOME (mk_app brack (str (s ^
(if i=0 then "" else string_of_int i))) ps, gr'')
end
| Free (s, T) =>
let
val (ps, gr') = codegens true ts gr;
val (_, gr'') = invoke_tycodegen thy mode defs dep module false T gr'
in SOME (mk_app brack (str s) ps, gr'') end
| Const (s, T) =>
(case get_assoc_code thy (s, T) of
SOME (ms, aux) =>
let val i = num_args_of ms
in if length ts < i then
default_codegen thy mode defs dep module brack (eta_expand u ts i) gr
else
let
val (ts1, ts2) = args_of ms ts;
val (ps1, gr1) = codegens false ts1 gr;
val (ps2, gr2) = codegens true ts2 gr1;
val (ps3, gr3) = codegens false (quotes_of ms) gr2;
val (_, gr4) = invoke_tycodegen thy mode defs dep module false
(funpow (length ts) (hd o tl o snd o dest_Type) T) gr3;
val (module', suffix) = (case get_defn thy defs s T of
NONE => (if_library mode (thyname_of_const thy s) module, "")
| SOME ((U, (module', _)), NONE) =>
(if_library mode module' module, "")
| SOME ((U, (module', _)), SOME i) =>
(if_library mode module' module, " def" ^ string_of_int i));
val node_id = s ^ suffix;
fun p module' = mk_app brack (Pretty.block
(pretty_mixfix module module' ms ps1 ps3)) ps2
in SOME (case try (get_node gr4) node_id of
NONE => (case get_aux_code mode aux of
[] => (p module, gr4)
| xs => (p module', add_edge (node_id, dep) (new_node
(node_id, (NONE, module', cat_lines xs ^ "\n")) gr4)))
| SOME (_, module'', _) =>
(p module'', add_edge (node_id, dep) gr4))
end
end
| NONE => (case get_defn thy defs s T of
NONE => NONE
| SOME ((U, (thyname, thm)), k) => (case prep_prim_def thy thm
of SOME (_, (_, (args, rhs))) => let
val module' = if_library mode thyname module;
val suffix = (case k of NONE => "" | SOME i => " def" ^ string_of_int i);
val node_id = s ^ suffix;
val ((ps, def_id), gr') = gr |> codegens true ts
||>> mk_const_id module' (s ^ suffix);
val p = mk_app brack (str (mk_qual_id module def_id)) ps
in SOME (case try (get_node gr') node_id of
NONE =>
let
val _ = message ("expanding definition of " ^ s);
val Ts = binder_types U;
val (args', rhs') =
if not (null args) orelse null Ts then (args, rhs) else
let val v = Free (new_name rhs "x", hd Ts)
in ([v], betapply (rhs, v)) end;
val (p', gr1) = invoke_codegen thy mode defs node_id module' false
rhs' (add_edge (node_id, dep)
(new_node (node_id, (NONE, "", "")) gr'));
val (xs, gr2) = codegens false args' gr1;
val (_, gr3) = invoke_tycodegen thy mode defs dep module false T gr2;
val (ty, gr4) = invoke_tycodegen thy mode defs node_id module' false U gr3;
in (p, map_node node_id (K (NONE, module', string_of
(Pretty.block (separate (Pretty.brk 1)
(if null args' then
[str ("val " ^ snd def_id ^ " :"), ty]
else str ("fun " ^ snd def_id) :: xs) @
[str " =", Pretty.brk 1, p', str ";"])) ^ "\n\n")) gr4)
end
| SOME _ => (p, add_edge (node_id, dep) gr'))
end
| NONE => NONE)))
| Abs _ =>
let
val (bs, Ts) = ListPair.unzip (strip_abs_vars u);
val t = strip_abs_body u
val bs' = new_names t bs;
val (ps, gr1) = codegens true ts gr;
val (p, gr2) = invoke_codegen thy mode defs dep module false
(subst_bounds (map Free (rev (bs' ~~ Ts)), t)) gr1;
in
SOME (mk_app brack (Pretty.block (str "(" :: pretty_fn bs' p @
[str ")"])) ps, gr2)
end
| _ => NONE)
end;
fun default_tycodegen thy mode defs dep module brack (TVar ((s, i), _)) gr =
SOME (str (s ^ (if i = 0 then "" else string_of_int i)), gr)
| default_tycodegen thy mode defs dep module brack (TFree (s, _)) gr =
SOME (str s, gr)
| default_tycodegen thy mode defs dep module brack (Type (s, Ts)) gr =
(case AList.lookup (op =) ((#types o CodegenData.get) thy) s of
NONE => NONE
| SOME (ms, aux) =>
let
val (ps, gr') = fold_map
(invoke_tycodegen thy mode defs dep module false)
(fst (args_of ms Ts)) gr;
val (qs, gr'') = fold_map
(invoke_tycodegen thy mode defs dep module false)
(quotes_of ms) gr';
val module' = if_library mode (thyname_of_type thy s) module;
val node_id = s ^ " (type)";
fun p module' = Pretty.block (pretty_mixfix module module' ms ps qs)
in SOME (case try (get_node gr'') node_id of
NONE => (case get_aux_code mode aux of
[] => (p module', gr'')
| xs => (p module', snd (mk_type_id module' s
(add_edge (node_id, dep) (new_node (node_id,
(NONE, module', cat_lines xs ^ "\n")) gr'')))))
| SOME (_, module'', _) =>
(p module'', add_edge (node_id, dep) gr''))
end);
fun mk_tuple [p] = p
| mk_tuple ps = Pretty.block (str "(" ::
flat (separate [str ",", Pretty.brk 1] (map single ps)) @ [str ")"]);
fun mk_let bindings body =
Pretty.blk (0, [str "let", Pretty.brk 1,
Pretty.blk (0, separate Pretty.fbrk (map (fn (pat, rhs) =>
Pretty.block [str "val ", pat, str " =", Pretty.brk 1,
rhs, str ";"]) bindings)),
Pretty.brk 1, str "in", Pretty.brk 1, body,
Pretty.brk 1, str "end"]);
fun mk_struct name s = "structure " ^ name ^ " =\nstruct\n\n" ^ s ^ "end;\n";
fun add_to_module name s = AList.map_entry (op =) (name : string) (suffix s);
fun output_code gr module xs =
let
val code = map_filter (fn s =>
let val c as (_, module', _) = Graph.get_node gr s
in if module = "" orelse module = module' then SOME (s, c) else NONE end)
(rev (Graph.all_preds gr xs));
fun string_of_cycle (a :: b :: cs) =
let val SOME (x, y) = get_first (fn (x, (_, a', _)) =>
if a = a' then Option.map (pair x)
(find_first ((fn (_, b', _) => b' = b) o Graph.get_node gr)
(Graph.imm_succs gr x))
else NONE) code
in x ^ " called by " ^ y ^ "\n" ^ string_of_cycle (b :: cs) end
| string_of_cycle _ = ""
in
if module = "" then
let
val modules = distinct (op =) (map (#2 o snd) code);
val mod_gr = fold_rev Graph.add_edge_acyclic
(maps (fn (s, (_, module, _)) => map (pair module)
(filter_out (fn s => s = module) (map (#2 o Graph.get_node gr)
(Graph.imm_succs gr s)))) code)
(fold_rev (Graph.new_node o rpair ()) modules Graph.empty);
val modules' =
rev (Graph.all_preds mod_gr (map (#2 o Graph.get_node gr) xs))
in
List.foldl (fn ((_, (_, module, s)), ms) => add_to_module module s ms)
(map (rpair "") modules') code
end handle Graph.CYCLES (cs :: _) =>
error ("Cyclic dependency of modules:\n" ^ commas cs ^
"\n" ^ string_of_cycle cs)
else [(module, implode (map (#3 o snd) code))]
end;
fun gen_generate_code prep_term thy mode modules module xs =
let
val _ = (module <> "" orelse
member (op =) mode "library" andalso forall (fn (s, _) => s = "") xs)
orelse error "missing module name";
val graphs = get_modules thy;
val defs = mk_deftab thy;
val gr = new_node ("<Top>", (NONE, module, ""))
(List.foldl (fn ((gr, (tab1, tab2)), (gr', (tab1', tab2'))) =>
(Graph.merge (fn ((_, module, _), (_, module', _)) =>
module = module') (gr, gr'),
(merge_nametabs (tab1, tab1'), merge_nametabs (tab2, tab2')))) emptygr
(map (fn s => case Symtab.lookup graphs s of
NONE => error ("Undefined code module: " ^ s)
| SOME gr => gr) modules))
handle Graph.DUP k => error ("Duplicate code for " ^ k);
fun expand (t as Abs _) = t
| expand t = (case fastype_of t of
Type ("fun", [T, U]) => Abs ("x", T, t $ Bound 0) | _ => t);
val (ps, gr') = fold_map (fn (s, t) => fn gr => apfst (pair s)
(invoke_codegen thy mode defs "<Top>" module false t gr))
(map (apsnd (expand o preprocess_term thy o prep_term thy)) xs) gr;
val code = map_filter
(fn ("", _) => NONE
| (s', p) => SOME (string_of (Pretty.block
[str ("val " ^ s' ^ " ="), Pretty.brk 1, p, str ";"]))) ps;
val code' = space_implode "\n\n" code ^ "\n\n";
val code'' =
map_filter (fn (name, s) =>
if member (op =) mode "library" andalso name = module andalso null code
then NONE
else SOME (name, mk_struct name s))
((if null code then I
else add_to_module module code')
(output_code (fst gr') (if_library mode "" module) ["<Top>"]))
in
(code'', del_nodes ["<Top>"] gr')
end;
val generate_code_i = gen_generate_code Sign.cert_term;
val generate_code =
gen_generate_code (Syntax.read_term o Proof_Context.allow_dummies o Proof_Context.init_global);
(**** Reflection ****)
val strip_tname = implode o tl o raw_explode;
fun pretty_list xs = Pretty.block (str "[" ::
flat (separate [str ",", Pretty.brk 1] (map single xs)) @
[str "]"]);
fun mk_type p (TVar ((s, i), _)) = str
(strip_tname s ^ (if i = 0 then "" else string_of_int i) ^ "T")
| mk_type p (TFree (s, _)) = str (strip_tname s ^ "T")
| mk_type p (Type (s, Ts)) = (if p then parens else I) (Pretty.block
[str "Type", Pretty.brk 1, str ("(\"" ^ s ^ "\","),
Pretty.brk 1, pretty_list (map (mk_type false) Ts), str ")"]);
fun mk_term_of gr module p (TVar ((s, i), _)) = str
(strip_tname s ^ (if i = 0 then "" else string_of_int i) ^ "F")
| mk_term_of gr module p (TFree (s, _)) = str (strip_tname s ^ "F")
| mk_term_of gr module p (Type (s, Ts)) = (if p then parens else I)
(Pretty.block (separate (Pretty.brk 1)
(str (mk_qual_id module
(get_type_id' (fn s' => "term_of_" ^ s') gr s)) ::
maps (fn T =>
[mk_term_of gr module true T, mk_type true T]) Ts)));
(**** Implicit results ****)
structure Result = Proof_Data
(
type T = (int -> term list option) * (unit -> term);
fun init _ = (fn _ => NONE, fn () => Bound 0);
);
val get_test_fn = #1 o Result.get;
val get_eval_fn = #2 o Result.get;
fun poke_test_fn f = Context.>> (Context.map_proof (Result.map (fn (_, g) => (f, g))));
fun poke_eval_fn g = Context.>> (Context.map_proof (Result.map (fn (f, _) => (f, g))));
(**** Test data generators ****)
fun mk_gen gr module p xs a (TVar ((s, i), _)) = str
(strip_tname s ^ (if i = 0 then "" else string_of_int i) ^ "G")
| mk_gen gr module p xs a (TFree (s, _)) = str (strip_tname s ^ "G")
| mk_gen gr module p xs a (Type (tyc as (s, Ts))) = (if p then parens else I)
(Pretty.block (separate (Pretty.brk 1)
(str (mk_qual_id module (get_type_id' (fn s' => "gen_" ^ s') gr s) ^
(if member (op =) xs s then "'" else "")) ::
(case tyc of
("fun", [T, U]) =>
[mk_term_of gr module true T, mk_type true T,
mk_gen gr module true xs a U, mk_type true U]
| _ => maps (fn T =>
[mk_gen gr module true xs a T, mk_type true T]) Ts) @
(if member (op =) xs s then [str a] else []))));
fun test_term ctxt t =
let
val thy = Proof_Context.theory_of ctxt;
val (code, gr) = generate_code_i thy ["term_of", "test"] [] "Generated" [("testf", t)];
val Ts = map snd (fst (strip_abs t));
val args = map_index (fn (i, T) => ("arg" ^ string_of_int i, T)) Ts;
val s = "structure Test_Term =\nstruct\n\n" ^
cat_lines (map snd code) ^
"\nopen Generated;\n\n" ^ string_of
(Pretty.block [str "val () = Codegen.poke_test_fn",
Pretty.brk 1, str ("(fn i =>"), Pretty.brk 1,
mk_let (map (fn (s, T) =>
(mk_tuple [str s, str (s ^ "_t")],
Pretty.block [mk_gen gr "Generated" false [] "" T, Pretty.brk 1,
str "i"])) args)
(Pretty.block [str "if ",
mk_app false (str "testf") (map (str o fst) args),
Pretty.brk 1, str "then NONE",
Pretty.brk 1, str "else ",
Pretty.block [str "SOME ",
Pretty.enum "," "[" "]" (map (fn (s, _) => str (s ^ "_t ()")) args)]]),
str ");"]) ^
"\n\nend;\n";
in
ctxt
|> Context.proof_map (ML_Context.exec (fn () => ML_Context.eval_text false Position.none s))
|> get_test_fn
end;
(**** Evaluator for terms ****)
fun eval_term ctxt t =
let
val _ = legacy_feature "Old evaluation mechanism -- use evaluator 'code' or method eval instead";
val thy = Proof_Context.theory_of ctxt;
val _ = (null (Term.add_tvars t []) andalso null (Term.add_tfrees t [])) orelse
error "Term to be evaluated contains type variables";
val _ = (null (Term.add_vars t []) andalso null (Term.add_frees t [])) orelse
error "Term to be evaluated contains variables";
val (code, gr) =
generate_code_i thy ["term_of"] [] "Generated"
[("result", Abs ("x", TFree ("'a", []), t))];
val s = "structure Eval_Term =\nstruct\n\n" ^
cat_lines (map snd code) ^
"\nopen Generated;\n\n" ^ string_of
(Pretty.block [str "val () = Codegen.poke_eval_fn (fn () =>",
Pretty.brk 1,
mk_app false (mk_term_of gr "Generated" false (fastype_of t))
[str "(result ())"],
str ");"]) ^
"\n\nend;\n";
val eval_fn =
ctxt
|> Context.proof_map (ML_Context.exec (fn () => ML_Context.eval_text false Position.none s))
|> get_eval_fn;
in eval_fn () end;
val (_, evaluation_oracle) = Context.>>> (Context.map_theory_result
(Thm.add_oracle (Binding.name "evaluation", fn (ctxt, ct) =>
let
val thy = Proof_Context.theory_of ctxt;
val t = Thm.term_of ct;
in
if Theory.subthy (Thm.theory_of_cterm ct, thy) then
Thm.cterm_of thy (Logic.mk_equals (t, eval_term ctxt t))
else raise CTERM ("evaluation_oracle: bad theory", [ct])
end)));
fun evaluation_conv ctxt ct = evaluation_oracle (ctxt, ct);
(**** Interface ****)
fun parse_mixfix rd s =
(case Scan.finite Symbol.stopper (Scan.repeat
( $$ "_" >> K Arg
|| $$ "?" >> K Ignore
|| $$ "\\<module>" >> K Module
|| $$ "/" |-- Scan.repeat ($$ " ") >> (Pretty o Pretty.brk o length)
|| $$ "{" |-- $$ "*" |-- Scan.repeat1
( $$ "'" |-- Scan.one Symbol.is_regular
|| Scan.unless ($$ "*" -- $$ "}") (Scan.one Symbol.is_regular)) --|
$$ "*" --| $$ "}" >> (Quote o rd o implode)
|| Scan.repeat1
( $$ "'" |-- Scan.one Symbol.is_regular
|| Scan.unless ($$ "_" || $$ "?" || $$ "\\<module>" || $$ "/" || $$ "{" |-- $$ "*")
(Scan.one Symbol.is_regular)) >> (Pretty o str o implode)))
(Symbol.explode s) of
(p, []) => p
| _ => error ("Malformed annotation: " ^ quote s));
val _ = List.app Keyword.keyword ["attach", "file", "contains"];
fun strip_whitespace s = implode (fst (take_suffix (fn c => c = "\n" orelse c = " ")
(snd (take_prefix (fn c => c = "\n" orelse c = " ") (raw_explode s))))) ^ "\n";
val parse_attach = Scan.repeat (Parse.$$$ "attach" |--
Scan.optional (Parse.$$$ "(" |-- Parse.xname --| Parse.$$$ ")") "" --
(Parse.verbatim >> strip_whitespace));
val _ =
Outer_Syntax.command "types_code"
"associate types with target language types" Keyword.thy_decl
(Scan.repeat1 (Parse.xname --| Parse.$$$ "(" -- Parse.string --| Parse.$$$ ")" -- parse_attach) >>
(fn xs => Toplevel.theory (fn thy => fold (assoc_type o
(fn ((name, mfx), aux) => (name, (parse_mixfix
(Syntax.read_typ_global thy) mfx, aux)))) xs thy)));
val _ =
Outer_Syntax.command "consts_code"
"associate constants with target language code" Keyword.thy_decl
(Scan.repeat1
(Parse.term --|
Parse.$$$ "(" -- Parse.string --| Parse.$$$ ")" -- parse_attach) >>
(fn xs => Toplevel.theory (fn thy => fold (assoc_const o
(fn ((const, mfx), aux) =>
(const, (parse_mixfix (Syntax.read_term_global thy) mfx, aux)))) xs thy)));
fun parse_code lib =
Scan.optional (Parse.$$$ "(" |-- Parse.enum "," Parse.xname --| Parse.$$$ ")") [] --
(if lib then Scan.optional Parse.name "" else Parse.name) --
Scan.option (Parse.$$$ "file" |-- Parse.name) --
(if lib then Scan.succeed []
else Scan.optional (Parse.$$$ "imports" |-- Scan.repeat1 Parse.name) []) --|
Parse.$$$ "contains" --
( Scan.repeat1 (Parse.name --| Parse.$$$ "=" -- Parse.term)
|| Scan.repeat1 (Parse.term >> pair "")) >>
(fn ((((mode, module), opt_fname), modules), xs) => Toplevel.theory (fn thy =>
let
val _ = legacy_feature "Old code generation command -- use export_code instead";
val mode' = (if lib then insert (op =) "library" else I) (remove (op =) "library" mode);
val (code, gr) = generate_code thy mode' modules module xs;
val thy' = thy |> Context.theory_map (ML_Context.exec (fn () =>
(case opt_fname of
NONE => ML_Context.eval_text false Position.none (cat_lines (map snd code))
| SOME fname =>
if lib then app (fn (name, s) => File.write
(Path.append (Path.explode fname) (Path.basic (name ^ ".ML"))) s)
(("ROOT", implode (map (fn (name, _) =>
"use \"" ^ name ^ ".ML\";\n") code)) :: code)
else File.write (Path.explode fname) (snd (hd code)))));
in
if lib then thy'
else map_modules (Symtab.update (module, gr)) thy'
end));
val setup = add_codegen "default" default_codegen
#> add_tycodegen "default" default_tycodegen
#> add_preprocessor unfold_preprocessor;
val _ =
Outer_Syntax.command "code_library"
"generate code for terms (one structure for each theory)" Keyword.thy_decl
(parse_code true);
val _ =
Outer_Syntax.command "code_module"
"generate code for terms (single structure, incremental)" Keyword.thy_decl
(parse_code false);
end;