added flat_eq,
renamed adm_disj_lemma11 to adm_lemma11,
localized adm_disj_lemma1, ..., adm_disj_lemma10, adm_disj_lemma12,
modularized proof of admI
(* Title: HOLCF/sprod0.thy
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Lemmas for theory sprod0.thy
*)
open Sprod0;
(* ------------------------------------------------------------------------ *)
(* A non-emptyness result for Sprod *)
(* ------------------------------------------------------------------------ *)
val SprodI = prove_goalw Sprod0.thy [Sprod_def]
"Spair_Rep(a,b):Sprod"
(fn prems =>
[
(EVERY1 [rtac CollectI, rtac exI,rtac exI, rtac refl])
]);
val inj_onto_Abs_Sprod = prove_goal Sprod0.thy
"inj_onto(Abs_Sprod,Sprod)"
(fn prems =>
[
(rtac inj_onto_inverseI 1),
(etac Abs_Sprod_inverse 1)
]);
(* ------------------------------------------------------------------------ *)
(* Strictness and definedness of Spair_Rep *)
(* ------------------------------------------------------------------------ *)
val strict_Spair_Rep = prove_goalw Sprod0.thy [Spair_Rep_def]
"(a=UU | b=UU) ==> (Spair_Rep(a,b) = Spair_Rep(UU,UU))"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac ext 1),
(rtac ext 1),
(rtac iffI 1),
(fast_tac HOL_cs 1),
(fast_tac HOL_cs 1)
]);
val defined_Spair_Rep_rev = prove_goalw Sprod0.thy [Spair_Rep_def]
"(Spair_Rep(a,b) = Spair_Rep(UU,UU)) ==> (a=UU | b=UU)"
(fn prems =>
[
(res_inst_tac [("Q","a=UU|b=UU")] classical2 1),
(atac 1),
(rtac disjI1 1),
(rtac ((hd prems) RS fun_cong RS fun_cong RS iffD2 RS mp RS
conjunct1 RS sym) 1),
(fast_tac HOL_cs 1),
(fast_tac HOL_cs 1)
]);
(* ------------------------------------------------------------------------ *)
(* injectivity of Spair_Rep and Ispair *)
(* ------------------------------------------------------------------------ *)
val inject_Spair_Rep = prove_goalw Sprod0.thy [Spair_Rep_def]
"[|~aa=UU ; ~ba=UU ; Spair_Rep(a,b)=Spair_Rep(aa,ba) |] ==> a=aa & b=ba"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac ((nth_elem (2,prems)) RS fun_cong RS fun_cong
RS iffD1 RS mp) 1),
(fast_tac HOL_cs 1),
(fast_tac HOL_cs 1)
]);
val inject_Ispair = prove_goalw Sprod0.thy [Ispair_def]
"[|~aa=UU ; ~ba=UU ; Ispair(a,b)=Ispair(aa,ba) |] ==> a=aa & b=ba"
(fn prems =>
[
(cut_facts_tac prems 1),
(etac inject_Spair_Rep 1),
(atac 1),
(etac (inj_onto_Abs_Sprod RS inj_ontoD) 1),
(rtac SprodI 1),
(rtac SprodI 1)
]);
(* ------------------------------------------------------------------------ *)
(* strictness and definedness of Ispair *)
(* ------------------------------------------------------------------------ *)
val strict_Ispair = prove_goalw Sprod0.thy [Ispair_def]
"(a=UU | b=UU) ==> Ispair(a,b)=Ispair(UU,UU)"
(fn prems =>
[
(cut_facts_tac prems 1),
(etac (strict_Spair_Rep RS arg_cong) 1)
]);
val strict_Ispair1 = prove_goalw Sprod0.thy [Ispair_def]
"Ispair(UU,b) = Ispair(UU,UU)"
(fn prems =>
[
(rtac (strict_Spair_Rep RS arg_cong) 1),
(rtac disjI1 1),
(rtac refl 1)
]);
val strict_Ispair2 = prove_goalw Sprod0.thy [Ispair_def]
"Ispair(a,UU) = Ispair(UU,UU)"
(fn prems =>
[
(rtac (strict_Spair_Rep RS arg_cong) 1),
(rtac disjI2 1),
(rtac refl 1)
]);
val strict_Ispair_rev = prove_goal Sprod0.thy
"~Ispair(x,y)=Ispair(UU,UU) ==> ~x=UU & ~y=UU"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac (de_morgan1 RS ssubst) 1),
(etac contrapos 1),
(etac strict_Ispair 1)
]);
val defined_Ispair_rev = prove_goalw Sprod0.thy [Ispair_def]
"Ispair(a,b) = Ispair(UU,UU) ==> (a = UU | b = UU)"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac defined_Spair_Rep_rev 1),
(rtac (inj_onto_Abs_Sprod RS inj_ontoD) 1),
(atac 1),
(rtac SprodI 1),
(rtac SprodI 1)
]);
val defined_Ispair = prove_goal Sprod0.thy
"[|~a=UU; ~b=UU|] ==> ~(Ispair(a,b) = Ispair(UU,UU))"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac contrapos 1),
(etac defined_Ispair_rev 2),
(rtac (de_morgan1 RS iffD1) 1),
(etac conjI 1),
(atac 1)
]);
(* ------------------------------------------------------------------------ *)
(* Exhaustion of the strict product ** *)
(* ------------------------------------------------------------------------ *)
val Exh_Sprod = prove_goalw Sprod0.thy [Ispair_def]
"z=Ispair(UU,UU) | (? a b. z=Ispair(a,b) & ~a=UU & ~b=UU)"
(fn prems =>
[
(rtac (rewrite_rule [Sprod_def] Rep_Sprod RS CollectE) 1),
(etac exE 1),
(etac exE 1),
(rtac (excluded_middle RS disjE) 1),
(rtac disjI2 1),
(rtac exI 1),
(rtac exI 1),
(rtac conjI 1),
(rtac (Rep_Sprod_inverse RS sym RS trans) 1),
(etac arg_cong 1),
(rtac (de_morgan1 RS ssubst) 1),
(atac 1),
(rtac disjI1 1),
(rtac (Rep_Sprod_inverse RS sym RS trans) 1),
(res_inst_tac [("f","Abs_Sprod")] arg_cong 1),
(etac trans 1),
(etac strict_Spair_Rep 1)
]);
(* ------------------------------------------------------------------------ *)
(* general elimination rule for strict product *)
(* ------------------------------------------------------------------------ *)
val IsprodE = prove_goal Sprod0.thy
"[|p=Ispair(UU,UU) ==> Q ;!!x y. [|p=Ispair(x,y); ~x=UU ; ~y=UU|] ==> Q|] ==> Q"
(fn prems =>
[
(rtac (Exh_Sprod RS disjE) 1),
(etac (hd prems) 1),
(etac exE 1),
(etac exE 1),
(etac conjE 1),
(etac conjE 1),
(etac (hd (tl prems)) 1),
(atac 1),
(atac 1)
]);
(* ------------------------------------------------------------------------ *)
(* some results about the selectors Isfst, Issnd *)
(* ------------------------------------------------------------------------ *)
val strict_Isfst = prove_goalw Sprod0.thy [Isfst_def]
"p=Ispair(UU,UU)==>Isfst(p)=UU"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac select_equality 1),
(rtac conjI 1),
(fast_tac HOL_cs 1),
(strip_tac 1),
(res_inst_tac [("P","Ispair(UU,UU) = Ispair(a,b)")] notE 1),
(rtac not_sym 1),
(rtac defined_Ispair 1),
(REPEAT (fast_tac HOL_cs 1))
]);
val strict_Isfst1 = prove_goal Sprod0.thy
"Isfst(Ispair(UU,y)) = UU"
(fn prems =>
[
(rtac (strict_Ispair1 RS ssubst) 1),
(rtac strict_Isfst 1),
(rtac refl 1)
]);
val strict_Isfst2 = prove_goal Sprod0.thy
"Isfst(Ispair(x,UU)) = UU"
(fn prems =>
[
(rtac (strict_Ispair2 RS ssubst) 1),
(rtac strict_Isfst 1),
(rtac refl 1)
]);
val strict_Issnd = prove_goalw Sprod0.thy [Issnd_def]
"p=Ispair(UU,UU)==>Issnd(p)=UU"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac select_equality 1),
(rtac conjI 1),
(fast_tac HOL_cs 1),
(strip_tac 1),
(res_inst_tac [("P","Ispair(UU,UU) = Ispair(a,b)")] notE 1),
(rtac not_sym 1),
(rtac defined_Ispair 1),
(REPEAT (fast_tac HOL_cs 1))
]);
val strict_Issnd1 = prove_goal Sprod0.thy
"Issnd(Ispair(UU,y)) = UU"
(fn prems =>
[
(rtac (strict_Ispair1 RS ssubst) 1),
(rtac strict_Issnd 1),
(rtac refl 1)
]);
val strict_Issnd2 = prove_goal Sprod0.thy
"Issnd(Ispair(x,UU)) = UU"
(fn prems =>
[
(rtac (strict_Ispair2 RS ssubst) 1),
(rtac strict_Issnd 1),
(rtac refl 1)
]);
val Isfst = prove_goalw Sprod0.thy [Isfst_def]
"[|~x=UU ;~y=UU |] ==> Isfst(Ispair(x,y)) = x"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac select_equality 1),
(rtac conjI 1),
(strip_tac 1),
(res_inst_tac [("P","Ispair(x,y) = Ispair(UU,UU)")] notE 1),
(etac defined_Ispair 1),
(atac 1),
(atac 1),
(strip_tac 1),
(rtac (inject_Ispair RS conjunct1) 1),
(fast_tac HOL_cs 3),
(fast_tac HOL_cs 1),
(fast_tac HOL_cs 1),
(fast_tac HOL_cs 1)
]);
val Issnd = prove_goalw Sprod0.thy [Issnd_def]
"[|~x=UU ;~y=UU |] ==> Issnd(Ispair(x,y)) = y"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac select_equality 1),
(rtac conjI 1),
(strip_tac 1),
(res_inst_tac [("P","Ispair(x,y) = Ispair(UU,UU)")] notE 1),
(etac defined_Ispair 1),
(atac 1),
(atac 1),
(strip_tac 1),
(rtac (inject_Ispair RS conjunct2) 1),
(fast_tac HOL_cs 3),
(fast_tac HOL_cs 1),
(fast_tac HOL_cs 1),
(fast_tac HOL_cs 1)
]);
val Isfst2 = prove_goal Sprod0.thy "~y=UU ==>Isfst(Ispair(x,y))=x"
(fn prems =>
[
(cut_facts_tac prems 1),
(res_inst_tac [("Q","x=UU")] (excluded_middle RS disjE) 1),
(etac Isfst 1),
(atac 1),
(hyp_subst_tac 1),
(rtac strict_Isfst1 1)
]);
val Issnd2 = prove_goal Sprod0.thy "~x=UU ==>Issnd(Ispair(x,y))=y"
(fn prems =>
[
(cut_facts_tac prems 1),
(res_inst_tac [("Q","y=UU")] (excluded_middle RS disjE) 1),
(etac Issnd 1),
(atac 1),
(hyp_subst_tac 1),
(rtac strict_Issnd2 1)
]);
(* ------------------------------------------------------------------------ *)
(* instantiate the simplifier *)
(* ------------------------------------------------------------------------ *)
val Sprod_ss =
HOL_ss
addsimps [strict_Isfst1,strict_Isfst2,strict_Issnd1,strict_Issnd2,
Isfst2,Issnd2];
val defined_IsfstIssnd = prove_goal Sprod0.thy
"~p=Ispair(UU,UU) ==> ~Isfst(p)=UU & ~Issnd(p)=UU"
(fn prems =>
[
(cut_facts_tac prems 1),
(res_inst_tac [("p","p")] IsprodE 1),
(contr_tac 1),
(hyp_subst_tac 1),
(rtac conjI 1),
(asm_simp_tac Sprod_ss 1),
(asm_simp_tac Sprod_ss 1)
]);
(* ------------------------------------------------------------------------ *)
(* Surjective pairing: equivalent to Exh_Sprod *)
(* ------------------------------------------------------------------------ *)
val surjective_pairing_Sprod = prove_goal Sprod0.thy
"z = Ispair(Isfst(z))(Issnd(z))"
(fn prems =>
[
(res_inst_tac [("z1","z")] (Exh_Sprod RS disjE) 1),
(asm_simp_tac Sprod_ss 1),
(etac exE 1),
(etac exE 1),
(asm_simp_tac Sprod_ss 1)
]);