(* Title: HOL/Modelcheck/MuckeSyn.thy
Author: Tobias Hamberger
Copyright 1999 TU Muenchen
*)
theory MuckeSyn
imports MuCalculus
uses "mucke_oracle.ML"
begin
(* extended with some operators and case treatment (which requires postprocessing with
transform_case (from MuCalculus) (TH) *)
nonterminals
mutype
decl decls
cases_syn case_syn
syntax (Mucke output)
True :: bool ("true")
False :: bool ("false")
Not :: "bool => bool" ("! _" [40] 40)
If :: "[bool, 'a, 'a] => 'a" ("('(if'((_)')/ '((_)')/ else/ '((_)'))')" 10)
"op &" :: "[bool, bool] => bool" (infixr "&" 35)
"op |" :: "[bool, bool] => bool" (infixr "|" 30)
"op -->" :: "[bool, bool] => bool" (infixr "->" 25)
"op =" :: "['a, 'a] => bool" ("(_ =/ _)" [51, 51] 50)
"_not_equal" :: "['a, 'a] => bool" ("(_ !=/ _)" [51, 51] 50)
All_binder :: "[idts, bool] => bool" ("'((3forall _./ _)')" [0, 10] 10)
Ex_binder :: "[idts, bool] => bool" ("'((3exists _./ _)')" [0, 10] 10)
"_lambda" :: "[idts, 'a] => 'b" ("(3L _./ _)" 10)
"_applC" :: "[('b => 'a), cargs] => aprop" ("(1_/ '(_'))" [1000,1000] 999)
"_cargs" :: "['a, cargs] => cargs" ("_,/ _" [1000,1000] 1000)
"_idts" :: "[idt, idts] => idts" ("_,/ _" [1, 0] 0)
"_tuple" :: "'a => tuple_args => 'a * 'b" ("(1_,/ _)")
(* "@pttrn" :: "[pttrn, pttrns] => pttrn" ("_,/ _" [1, 0] 0)
"_pattern" :: "[pttrn, patterns] => pttrn" ("_,/ _" [1, 0] 0) *)
"_decl" :: "[mutype,pttrn] => decl" ("_ _")
"_decls" :: "[decl,decls] => decls" ("_,/ _")
"" :: "decl => decls" ("_")
"_mu" :: "[decl,decls,'a pred] => 'a pred" ("mu _ '(_') _ ;")
"_mudec" :: "[decl,decls] => 'a pred" ("mu _ '(_') ;")
"_nu" :: "[decl,decls,'a pred] => 'a pred" ("nu _ '(_') _ ;")
"_nudec" :: "[decl,decls] => 'a pred" ("nu _ '(_') ;")
"_fun" :: "[decl,decls,'a pred] => 'a pred" ("_ '(_') _ ;")
"_dec" :: "[decl,decls] => 'a pred" ("_ '(_') ;")
"_Ex" :: "[decl,idts,'a pred] => 'a pred" ("'((3exists _ _./ _)')")
"_All" :: "[decl,idts,'a pred] => 'a pred" ("'((3forall _ _./ _)')")
"Mu " :: "[idts, 'a pred] => 'a pred" ("(3mu _./ _)" 1000)
"Nu " :: "[idts, 'a pred] => 'a pred" ("(3nu _./ _)" 1000)
"_case_syntax":: "['a, cases_syn] => 'b" ("(case*_* / _ / esac*)" 10)
"_case1" :: "['a, 'b] => case_syn" ("(2*= _ :/ _;)" 10)
"" :: "case_syn => cases_syn" ("_")
"_case2" :: "[case_syn, cases_syn] => cases_syn" ("_/ _")
(*Terms containing a case statement must be post-processed with the
ML function transform_case. There, all asterikses before the "="
will be replaced by the expression between the two asterisks
following "case" and the asterisk after esac will be deleted *)
oracle mc_mucke_oracle = mk_mc_mucke_oracle
ML {*
(* search_mu t searches for Mu terms in term t. In the case of nested Mu's,
it yields innermost one. If no Mu term is present, search_mu yields NONE
*)
(* extended for treatment of nu (TH) *)
fun search_mu ((Const("MuCalculus.mu",tp)) $ t2) =
(case (search_mu t2) of
SOME t => SOME t
| NONE => SOME ((Const("MuCalculus.mu",tp)) $ t2))
| search_mu ((Const("MuCalculus.nu",tp)) $ t2) =
(case (search_mu t2) of
SOME t => SOME t
| NONE => SOME ((Const("MuCalculus.nu",tp)) $ t2))
| search_mu (t1 $ t2) =
(case (search_mu t1) of
SOME t => SOME t
| NONE => search_mu t2)
| search_mu (Abs(_,_,t)) = search_mu t
| search_mu _ = NONE;
(* seraching a variable in a term. Used in move_mus to extract the
term-rep of var b in hthm *)
fun search_var s t =
case t of
t1 $ t2 => (case (search_var s t1) of
SOME tt => SOME tt |
NONE => search_var s t2) |
Abs(_,_,t) => search_var s t |
Var((s1,_),_) => if s = s1 then SOME t else NONE |
_ => NONE;
(* function move_mus:
Mucke can't deal with nested Mu terms. move_mus i searches for
Mu terms in the subgoal i and replaces Mu terms in the conclusion
by constants and definitions in the premises recursively.
move_thm is the theorem the performs the replacement. To create NEW
names for the Mu terms, the indizes of move_thm are incremented by
max_idx of the subgoal.
*)
local
val move_thm = OldGoals.prove_goal @{theory} "[| a = b ==> P a; a = b |] ==> P b"
(fn prems => [cut_facts_tac prems 1, dtac sym 1, hyp_subst_tac 1,
REPEAT (resolve_tac prems 1)]);
val sig_move_thm = Thm.theory_of_thm move_thm;
val bCterm = cterm_of sig_move_thm (valOf (search_var "b" (concl_of move_thm)));
val aCterm = cterm_of sig_move_thm (valOf (search_var "a" (hd(prems_of move_thm))));
in
fun move_mus i state =
let val sign = Thm.theory_of_thm state;
val (subgoal::_) = Library.drop(i-1,prems_of state);
val concl = Logic.strip_imp_concl subgoal; (* recursive mu's in prems? *)
val redex = search_mu concl;
val idx = let val t = #maxidx (rep_thm state) in
if t < 0 then 1 else t+1 end;
in
case redex of
NONE => all_tac state |
SOME redexterm =>
let val Credex = cterm_of sign redexterm;
val aiCterm =
cterm_of sig_move_thm (Logic.incr_indexes ([],idx) (term_of aCterm));
val inst_move_thm = cterm_instantiate
[(bCterm,Credex),(aCterm,aiCterm)] move_thm;
in
((rtac inst_move_thm i) THEN (dtac eq_reflection i)
THEN (move_mus i)) state
end
end;
end;
val call_mucke_tac = CSUBGOAL (fn (cgoal, i) =>
let val OraAss = mc_mucke_oracle cgoal
in cut_facts_tac [OraAss] i end);
(* transforming fun-defs into lambda-defs *)
val [eq] = OldGoals.goal Pure.thy "(!! x. f x == g x) ==> f == g";
OldGoals.by (rtac (extensional eq) 1);
OldGoals.qed "ext_rl";
infix cc;
fun NONE cc xl = xl
| (SOME x) cc xl = x::xl;
fun getargs ((x $ y) $ (Var ((z,_),_))) = getargs (x $ y) ^ " " ^z
| getargs (x $ (Var ((y,_),_))) = y;
fun getfun ((x $ y) $ z) = getfun (x $ y)
| getfun (x $ _) = x;
local
fun delete_bold [] = []
| delete_bold (x::xs) = if (is_prefix (op =) ("\^["::"["::"0"::"m"::[]) (x::xs))
then (let val (_::_::_::s) = xs in delete_bold s end)
else (if (is_prefix (op =) ("\^["::"["::"1"::"m"::[]) (x::xs))
then (let val (_::_::_::s) = xs in delete_bold s end)
else (x::delete_bold xs));
fun delete_bold_string s = implode(delete_bold (explode s));
in
(* extension with removing bold font (TH) *)
fun mk_lam_def (_::_) _ _ = NONE
| mk_lam_def [] ((Const("==",_) $ (Const _)) $ RHS) t = SOME t
| mk_lam_def [] ((Const("==",_) $ LHS) $ RHS) t =
let val thy = theory_of_thm t;
val fnam = Syntax.string_of_term_global thy (getfun LHS);
val rhs = Syntax.string_of_term_global thy (freeze_thaw RHS)
val gl = delete_bold_string (fnam ^" == % " ^ (getargs LHS) ^" . " ^ rhs);
in
SOME (OldGoals.prove_goal thy gl (fn prems =>
[(REPEAT (rtac ext_rl 1)), (rtac t 1) ]))
end
| mk_lam_def [] _ t= NONE;
fun mk_lam_defs ([]:thm list) = ([]: thm list)
| mk_lam_defs (t::l) =
(mk_lam_def (prems_of t) (concl_of t) t) cc (mk_lam_defs l);
end;
(* first simplification, then model checking *)
val pair_eta_expand = Thm.symmetric (mk_meta_eq (thm "split_eta"));
val pair_eta_expand_proc =
Simplifier.simproc @{theory} "pair_eta_expand" ["f::'a*'b=>'c"]
(fn _ => fn _ => fn t => case t of Abs _ => SOME pair_eta_expand | _ => NONE);
val Mucke_ss = @{simpset} addsimprocs [pair_eta_expand_proc] addsimps [Let_def];
(* the interface *)
fun mc_mucke_tac defs i state =
(case Library.drop (i - 1, Thm.prems_of state) of
[] => no_tac state
| subgoal :: _ =>
EVERY [
REPEAT (etac thin_rl i),
cut_facts_tac (mk_lam_defs defs) i,
full_simp_tac (Mucke_ss delsimps [not_iff,split_part]) i,
move_mus i, call_mucke_tac i,atac i,
REPEAT (rtac refl i)] state);
*}
end