(* Title: HOL/Library/Quotient_Sum.thy
Author: Cezary Kaliszyk and Christian Urban
*)
section \<open>Quotient infrastructure for the sum type\<close>
theory Quotient_Sum
imports Quotient_Syntax
begin
subsection \<open>Rules for the Quotient package\<close>
lemma rel_sum_map1:
"rel_sum R1 R2 (map_sum f1 f2 x) y \<longleftrightarrow> rel_sum (\<lambda>x. R1 (f1 x)) (\<lambda>x. R2 (f2 x)) x y"
by (rule sum.rel_map(1))
lemma rel_sum_map2:
"rel_sum R1 R2 x (map_sum f1 f2 y) \<longleftrightarrow> rel_sum (\<lambda>x y. R1 x (f1 y)) (\<lambda>x y. R2 x (f2 y)) x y"
by (rule sum.rel_map(2))
lemma map_sum_id [id_simps]:
"map_sum id id = id"
by (simp add: id_def map_sum.identity fun_eq_iff)
lemma rel_sum_eq [id_simps]:
"rel_sum (=) (=) = (=)"
by (rule sum.rel_eq)
lemma reflp_rel_sum:
"reflp R1 \<Longrightarrow> reflp R2 \<Longrightarrow> reflp (rel_sum R1 R2)"
unfolding reflp_def split_sum_all rel_sum_simps by fast
lemma sum_symp:
"symp R1 \<Longrightarrow> symp R2 \<Longrightarrow> symp (rel_sum R1 R2)"
unfolding symp_def split_sum_all rel_sum_simps by fast
lemma sum_transp:
"transp R1 \<Longrightarrow> transp R2 \<Longrightarrow> transp (rel_sum R1 R2)"
unfolding transp_def split_sum_all rel_sum_simps by fast
lemma sum_equivp [quot_equiv]:
"equivp R1 \<Longrightarrow> equivp R2 \<Longrightarrow> equivp (rel_sum R1 R2)"
by (blast intro: equivpI reflp_rel_sum sum_symp sum_transp elim: equivpE)
lemma sum_quotient [quot_thm]:
assumes q1: "Quotient3 R1 Abs1 Rep1"
assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "Quotient3 (rel_sum R1 R2) (map_sum Abs1 Abs2) (map_sum Rep1 Rep2)"
apply (rule Quotient3I)
apply (simp_all add: map_sum.compositionality comp_def map_sum.identity rel_sum_eq rel_sum_map1 rel_sum_map2
Quotient3_abs_rep [OF q1] Quotient3_rel_rep [OF q1] Quotient3_abs_rep [OF q2] Quotient3_rel_rep [OF q2])
using Quotient3_rel [OF q1] Quotient3_rel [OF q2]
apply (fastforce elim!: rel_sum.cases simp add: comp_def split: sum.split)
done
declare [[mapQ3 sum = (rel_sum, sum_quotient)]]
lemma sum_Inl_rsp [quot_respect]:
assumes q1: "Quotient3 R1 Abs1 Rep1"
assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "(R1 ===> rel_sum R1 R2) Inl Inl"
by auto
lemma sum_Inr_rsp [quot_respect]:
assumes q1: "Quotient3 R1 Abs1 Rep1"
assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "(R2 ===> rel_sum R1 R2) Inr Inr"
by auto
lemma sum_Inl_prs [quot_preserve]:
assumes q1: "Quotient3 R1 Abs1 Rep1"
assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "(Rep1 ---> map_sum Abs1 Abs2) Inl = Inl"
apply(simp add: fun_eq_iff)
apply(simp add: Quotient3_abs_rep[OF q1])
done
lemma sum_Inr_prs [quot_preserve]:
assumes q1: "Quotient3 R1 Abs1 Rep1"
assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "(Rep2 ---> map_sum Abs1 Abs2) Inr = Inr"
apply(simp add: fun_eq_iff)
apply(simp add: Quotient3_abs_rep[OF q2])
done
end