(* Author: Pascal Stoop, ETH Zurich
Author: Andreas Lochbihler, Digital Asset *)
signature CASE_CONVERTER =
sig
type elimination_strategy
val to_case: Proof.context -> elimination_strategy -> (string * typ -> int) ->
thm list -> thm list option
val replace_by_type: (Proof.context -> string * string -> bool) -> elimination_strategy
val keep_constructor_context: elimination_strategy
end;
structure Case_Converter : CASE_CONVERTER =
struct
fun lookup_remove _ _ [] = (NONE, [])
| lookup_remove eq k ((k', v) :: kvs) =
if eq (k, k') then (SOME (k', v), kvs)
else apsnd (cons (k', v)) (lookup_remove eq k kvs)
fun mk_abort msg t =
let
val T = fastype_of t
val abort = Const (\<^const_name>\<open>missing_pattern_match\<close>, HOLogic.literalT --> (HOLogic.unitT --> T) --> T)
in
abort $ HOLogic.mk_literal msg $ absdummy HOLogic.unitT t
end
(* fold_term : (string * typ -> 'a) ->
(string * typ -> 'a) ->
(indexname * typ -> 'a) ->
(int -> 'a) ->
(string * typ * 'a -> 'a) ->
('a * 'a -> 'a) ->
term ->
'a *)
fun fold_term const_fun free_fun var_fun bound_fun abs_fun dollar_fun term =
let
fun go x = case x of
Const (s, T) => const_fun (s, T)
| Free (s, T) => free_fun (s, T)
| Var (i, T) => var_fun (i, T)
| Bound n => bound_fun n
| Abs (s, T, term) => abs_fun (s, T, go term)
| term1 $ term2 => dollar_fun (go term1, go term2)
in
go term
end;
datatype term_coordinate = End of typ
| Coordinate of (string * (int * term_coordinate)) list;
fun term_coordinate_merge (End T) _ = End T
| term_coordinate_merge _ (End T) = End T
| term_coordinate_merge (Coordinate xs) (Coordinate ys) =
let
fun merge_consts xs [] = xs
| merge_consts xs ((s1, (n, y)) :: ys) =
case List.partition (fn (s2, (m, _)) => s1 = s2 andalso n = m) xs of
([], xs') => (s1, (n, y)) :: (merge_consts xs' ys)
| ((_, (_, x)) :: _, xs') => (s1, (n, term_coordinate_merge x y)) :: (merge_consts xs' ys)
in
Coordinate (merge_consts xs ys)
end;
fun coordinates_to_list (End x) = [(x, [])]
| coordinates_to_list (Coordinate xs) =
let
fun f (s, (n, xss)) = map (fn (T, xs) => (T, (s, n) :: xs)) (coordinates_to_list xss)
in flat (map f xs) end;
type elimination_strategy = Proof.context -> term list -> term_coordinate list
fun replace_by_type replace_ctr ctxt pats =
let
fun term_to_coordinates P term =
let
val (ctr, args) = strip_comb term
in
case ctr of Const (s, T) =>
if P (body_type T |> dest_Type |> fst, s)
then SOME (End (body_type T))
else
let
fun f (i, t) = term_to_coordinates P t |> Option.map (pair i)
val tcos = map_filter I (map_index f args)
in
if null tcos then NONE
else SOME (Coordinate (map (pair s) tcos))
end
| _ => NONE
end
in
map_filter (term_to_coordinates (replace_ctr ctxt)) pats
end
fun keep_constructor_context ctxt pats =
let
fun to_coordinates [] = NONE
| to_coordinates pats =
let
val (fs, argss) = map strip_comb pats |> split_list
val f = hd fs
fun is_single_ctr (Const (name, T)) =
let
val tyco = body_type T |> dest_Type |> fst
val _ = Ctr_Sugar.ctr_sugar_of ctxt tyco |> the |> #ctrs
in
case Ctr_Sugar.ctr_sugar_of ctxt tyco of
NONE => error ("Not a free constructor " ^ name ^ " in pattern")
| SOME info =>
case #ctrs info of [Const (name', _)] => name = name'
| _ => false
end
| is_single_ctr _ = false
in
if not (is_single_ctr f) andalso forall (fn x => f = x) fs then
let
val patss = Ctr_Sugar_Util.transpose argss
fun recurse (i, pats) = to_coordinates pats |> Option.map (pair i)
val coords = map_filter I (map_index recurse patss)
in
if null coords then NONE
else SOME (Coordinate (map (pair (dest_Const f |> fst)) coords))
end
else SOME (End (body_type (fastype_of f)))
end
in
the_list (to_coordinates pats)
end
(* AL: TODO: change from term to const_name *)
fun find_ctr ctr1 xs =
let
val const_name = fst o dest_Const
fun const_equal (ctr1, ctr2) = const_name ctr1 = const_name ctr2
in
lookup_remove const_equal ctr1 xs
end;
datatype pattern
= Wildcard
| Value
| Split of int * (term * pattern) list * pattern;
fun pattern_merge Wildcard pat' = pat'
| pattern_merge Value _ = Value
| pattern_merge (Split (n, xs, pat)) Wildcard =
Split (n, map (apsnd (fn pat'' => pattern_merge pat'' Wildcard)) xs, pattern_merge pat Wildcard)
| pattern_merge (Split _) Value = Value
| pattern_merge (Split (n, xs, pat)) (Split (m, ys, pat'')) =
let
fun merge_consts xs [] = map (apsnd (fn pat => pattern_merge pat Wildcard)) xs
| merge_consts xs ((ctr, y) :: ys) =
(case find_ctr ctr xs of
(SOME (ctr, x), xs) => (ctr, pattern_merge x y) :: merge_consts xs ys
| (NONE, xs) => (ctr, y) :: merge_consts xs ys
)
in
Split (if n <= 0 then m else n, merge_consts xs ys, pattern_merge pat pat'')
end
fun pattern_intersect Wildcard _ = Wildcard
| pattern_intersect Value pat2 = pat2
| pattern_intersect (Split _) Wildcard = Wildcard
| pattern_intersect (Split (n, xs', pat1)) Value =
Split (n,
map (apsnd (fn pat1 => pattern_intersect pat1 Value)) xs',
pattern_intersect pat1 Value)
| pattern_intersect (Split (n, xs', pat1)) (Split (m, ys, pat2)) =
Split (if n <= 0 then m else n,
intersect_consts xs' ys pat1 pat2,
pattern_intersect pat1 pat2)
and
intersect_consts xs [] _ default2 = map (apsnd (fn pat => pattern_intersect pat default2)) xs
| intersect_consts xs ((ctr, pat2) :: ys) default1 default2 = case find_ctr ctr xs of
(SOME (ctr, pat1), xs') =>
(ctr, pattern_merge (pattern_merge (pattern_intersect pat1 pat2) (pattern_intersect default1 pat2))
(pattern_intersect pat1 default2)) ::
intersect_consts xs' ys default1 default2
| (NONE, xs') => (ctr, pattern_intersect default1 pat2) :: (intersect_consts xs' ys default1 default2)
fun pattern_lookup _ Wildcard = Wildcard
| pattern_lookup _ Value = Value
| pattern_lookup [] (Split (n, xs, pat)) =
Split (n, map (apsnd (pattern_lookup [])) xs, pattern_lookup [] pat)
| pattern_lookup (term :: terms) (Split (n, xs, pat)) =
let
val (ctr, args) = strip_comb term
fun map_ctr (term, pat) =
let
val args = term |> dest_Const |> snd |> binder_types |> map (fn T => Free ("x", T))
in
pattern_lookup args pat
end
in
if is_Const ctr then
case find_ctr ctr xs of (SOME (_, pat'), _) =>
pattern_lookup terms (pattern_merge (pattern_lookup args pat') (pattern_lookup [] pat))
| (NONE, _) => pattern_lookup terms pat
else if length xs < n orelse n <= 0 then
pattern_lookup terms pat
else pattern_lookup terms
(pattern_merge
(fold pattern_intersect (map map_ctr (tl xs)) (map_ctr (hd xs)))
(pattern_lookup [] pat))
end;
fun pattern_contains terms pat = case pattern_lookup terms pat of
Wildcard => false
| Value => true
| Split _ => raise Match;
fun pattern_create _ [] = Wildcard
| pattern_create ctr_count (term :: terms) =
let
val (ctr, args) = strip_comb term
in
if is_Const ctr then
Split (ctr_count ctr, [(ctr, pattern_create ctr_count (args @ terms))], Wildcard)
else Split (0, [], pattern_create ctr_count terms)
end;
fun pattern_insert ctr_count terms pat =
let
fun new_pattern terms = pattern_insert ctr_count terms (pattern_create ctr_count terms)
fun aux _ false Wildcard = Wildcard
| aux terms true Wildcard = if null terms then Value else new_pattern terms
| aux _ _ Value = Value
| aux terms modify (Split (n, xs', pat)) =
let
val unmodified = (n, map (apsnd (aux [] false)) xs', aux [] false pat)
in case terms of [] => Split unmodified
| term :: terms =>
let
val (ctr, args) = strip_comb term
val (m, ys, pat') = unmodified
in
if is_Const ctr
then case find_ctr ctr xs' of
(SOME (ctr, pat''), xs) =>
Split (m, (ctr, aux (args @ terms) modify pat'') :: map (apsnd (aux [] false)) xs, pat')
| (NONE, _) => if modify
then if m <= 0
then Split (ctr_count ctr, (ctr, new_pattern (args @ terms)) :: ys, pat')
else Split (m, (ctr, new_pattern (args @ terms)) :: ys, pat')
else Split unmodified
else Split (m, ys, aux terms modify pat)
end
end
in
aux terms true pat
end;
val pattern_empty = Wildcard;
fun replace_frees lhss rhss typ_list ctxt =
let
fun replace_frees_once (lhs, rhs) ctxt =
let
val add_frees_list = fold_rev Term.add_frees
val frees = add_frees_list lhs []
val (new_frees, ctxt1) = (Ctr_Sugar_Util.mk_Frees "x" (map snd frees) ctxt)
val (new_frees1, ctxt2) =
let
val (dest_frees, types) = split_list (map dest_Free new_frees)
val (new_frees, ctxt2) = Variable.variant_fixes dest_frees ctxt1
in
(map Free (new_frees ~~ types), ctxt2)
end
val dict = frees ~~ new_frees1
fun free_map_fun (s, T) =
case AList.lookup (op =) dict (s, T) of
NONE => Free (s, T)
| SOME x => x
val map_fun = fold_term Const free_map_fun Var Bound Abs (op $)
in
((map map_fun lhs, map_fun rhs), ctxt2)
end
fun variant_fixes (def_frees, ctxt) =
let
val (dest_frees, types) = split_list (map dest_Free def_frees)
val (def_frees, ctxt1) = Variable.variant_fixes dest_frees ctxt
in
(map Free (def_frees ~~ types), ctxt1)
end
val (def_frees, ctxt1) = variant_fixes (Ctr_Sugar_Util.mk_Frees "x" typ_list ctxt)
val (rhs_frees, ctxt2) = variant_fixes (Ctr_Sugar_Util.mk_Frees "x" typ_list ctxt1)
val (case_args, ctxt3) = variant_fixes (Ctr_Sugar_Util.mk_Frees "x"
(map fastype_of (hd lhss)) ctxt2)
val (new_terms1, ctxt4) = fold_map replace_frees_once (lhss ~~ rhss) ctxt3
val (lhss1, rhss1) = split_list new_terms1
in
(lhss1, rhss1, def_frees ~~ rhs_frees, case_args, ctxt4)
end;
fun add_names_in_type (Type (name, Ts)) =
List.foldr (op o) (Symtab.update (name, ())) (map add_names_in_type Ts)
| add_names_in_type (TFree _) = I
| add_names_in_type (TVar _) = I
fun add_names_in_term (Const (_, T)) = add_names_in_type T
| add_names_in_term (Free (_, T)) = add_names_in_type T
| add_names_in_term (Var (_, T)) = add_names_in_type T
| add_names_in_term (Bound _) = I
| add_names_in_term (Abs (_, T, body)) =
add_names_in_type T o add_names_in_term body
| add_names_in_term (t1 $ t2) = add_names_in_term t1 o add_names_in_term t2
fun add_type_names terms =
fold (fn term => fn f => add_names_in_term term o f) terms I
fun get_split_theorems ctxt =
Symtab.keys
#> map_filter (Ctr_Sugar.ctr_sugar_of ctxt)
#> map #split;
fun match (Const (s1, _)) (Const (s2, _)) = if s1 = s2 then SOME I else NONE
| match (Free y) x = SOME (fn z => if z = Free y then x else z)
| match (pat1 $ pattern2) (t1 $ t2) =
(case (match pat1 t1, match pattern2 t2) of
(SOME f, SOME g) => SOME (f o g)
| _ => NONE
)
| match _ _ = NONE;
fun match_all patterns terms =
let
fun combine _ NONE = NONE
| combine (f_opt, f_opt') (SOME g) =
case match f_opt f_opt' of SOME f => SOME (f o g) | _ => NONE
in
fold_rev combine (patterns ~~ terms) (SOME I)
end
fun matches (Const (s1, _)) (Const (s2, _)) = s1 = s2
| matches (Free _) _ = true
| matches (pat1 $ pat2) (t1 $ t2) = matches pat1 t1 andalso matches pat2 t2
| matches _ _ = false;
fun matches_all patterns terms = forall (uncurry matches) (patterns ~~ terms)
fun terms_to_case_at ctr_count ctxt (fun_t : term) (default_lhs : term list)
(pos, (lazy_case_arg, rhs_free))
((lhss : term list list), (rhss : term list), type_name_fun) =
let
fun abort t =
let
val fun_name = head_of t |> dest_Const |> fst
val msg = "Missing pattern in " ^ fun_name ^ "."
in
mk_abort msg t
end;
(* Step 1 : Eliminate lazy pattern *)
fun replace_pat_at (n, tcos) pat pats =
let
fun map_at _ _ [] = raise Empty
| map_at n f (x :: xs) = if n > 0
then apfst (cons x) (map_at (n - 1) f xs)
else apfst (fn x => x :: xs) (f x)
fun replace [] pat term = (pat, term)
| replace ((s1, n) :: tcos) pat term =
let
val (ctr, args) = strip_comb term
in
case ctr of Const (s2, _) =>
if s1 = s2
then apfst (pair ctr #> list_comb) (map_at n (replace tcos pat) args)
else (term, rhs_free)
| _ => (term, rhs_free)
end
val (part1, (old_pat, part2)) = chop n pats ||> (fn xs => (hd xs, tl xs))
val (new_pat, old_pat1) = replace tcos pat old_pat
in
(part1 @ [new_pat] @ part2, old_pat1)
end
val (lhss1, lazy_pats) = map (replace_pat_at pos lazy_case_arg) lhss
|> split_list
(* Step 2 : Split patterns *)
fun split equs =
let
fun merge_pattern (Const (s1, T1), Const (s2, _)) =
if s1 = s2 then SOME (Const (s1, T1)) else NONE
| merge_pattern (t, Free _) = SOME t
| merge_pattern (Free _, t) = SOME t
| merge_pattern (t1l $ t1r, t2l $ t2r) =
(case (merge_pattern (t1l, t2l), merge_pattern (t1r, t2r)) of
(SOME t1, SOME t2) => SOME (t1 $ t2)
| _ => NONE)
| merge_pattern _ = NONE
fun merge_patterns pats1 pats2 = case (pats1, pats2) of
([], []) => SOME []
| (x :: xs, y :: ys) =>
(case (merge_pattern (x, y), merge_patterns xs ys) of
(SOME x, SOME xs) => SOME (x :: xs)
| _ => NONE
)
| _ => raise Match
fun merge_insert ((lhs1, case_pat), _) [] =
[(lhs1, pattern_empty |> pattern_insert ctr_count [case_pat])]
| merge_insert ((lhs1, case_pat), rhs) ((lhs2, pat) :: pats) =
let
val pats = merge_insert ((lhs1, case_pat), rhs) pats
val (first_equ_needed, new_lhs) = case merge_patterns lhs1 lhs2 of
SOME new_lhs => (not (pattern_contains [case_pat] pat), new_lhs)
| NONE => (false, lhs2)
val second_equ_needed = not (matches_all lhs1 lhs2)
orelse not first_equ_needed
val first_equ = if first_equ_needed
then [(new_lhs, pattern_insert ctr_count [case_pat] pat)]
else []
val second_equ = if second_equ_needed
then [(lhs2, pat)]
else []
in
first_equ @ second_equ @ pats
end
in
(fold merge_insert equs []
|> split_list
|> fst) @ [default_lhs]
end
val lhss2 = split ((lhss1 ~~ lazy_pats) ~~ rhss)
(* Step 3 : Remove redundant patterns *)
fun remove_redundant_lhs lhss =
let
fun f lhs pat = if pattern_contains lhs pat
then ((lhs, false), pat)
else ((lhs, true), pattern_insert ctr_count lhs pat)
in
fold_map f lhss pattern_empty
|> fst
|> filter snd
|> map fst
end
fun remove_redundant_rhs rhss =
let
fun f (lhs, rhs) pat = if pattern_contains [lhs] pat
then (((lhs, rhs), false), pat)
else (((lhs, rhs), true), pattern_insert ctr_count [lhs] pat)
in
map fst (filter snd (fold_map f rhss pattern_empty |> fst))
end
val lhss3 = remove_redundant_lhs lhss2
(* Step 4 : Compute right hand side *)
fun subs_fun f = fold_term
Const
(f o Free)
Var
Bound
Abs
(fn (x, y) => f x $ f y)
fun find_rhss lhs =
let
fun f (lhs1, (pat, rhs)) =
case match_all lhs1 lhs of NONE => NONE
| SOME f => SOME (pat, subs_fun f rhs)
in
remove_redundant_rhs
(map_filter f (lhss1 ~~ (lazy_pats ~~ rhss)) @
[(lazy_case_arg, list_comb (fun_t, lhs) |> abort)]
)
end
(* Step 5 : make_case of right hand side *)
fun make_case ctxt case_arg cases = case cases of
[(Free x, rhs)] => subs_fun (fn y => if y = Free x then case_arg else y) rhs
| _ => Case_Translation.make_case
ctxt
Case_Translation.Warning
Name.context
case_arg
cases
val type_name_fun = add_type_names lazy_pats o type_name_fun
val rhss3 = map ((make_case ctxt lazy_case_arg) o find_rhss) lhss3
in
(lhss3, rhss3, type_name_fun)
end;
fun terms_to_case ctxt ctr_count (head : term) (lhss : term list list)
(rhss : term list) (typ_list : typ list) (poss : (int * (string * int) list) list) =
let
val (lhss1, rhss1, def_frees, case_args, ctxt1) = replace_frees lhss rhss typ_list ctxt
val exec_list = poss ~~ def_frees
val (lhss2, rhss2, type_name_fun) = fold_rev
(terms_to_case_at ctr_count ctxt1 head case_args) exec_list (lhss1, rhss1, I)
fun make_eq_term (lhss, rhs) = (list_comb (head, lhss), rhs)
|> HOLogic.mk_eq
|> HOLogic.mk_Trueprop
in
(map make_eq_term (lhss2 ~~ rhss2),
get_split_theorems ctxt1 (type_name_fun Symtab.empty),
ctxt1)
end;
fun build_case_t elimination_strategy ctr_count head lhss rhss ctxt =
let
val num_eqs = length lhss
val _ = if length rhss = num_eqs andalso num_eqs > 0 then ()
else raise Fail
("expected same number of left-hand sides as right-hand sides\n"
^ "and at least one equation")
val n = length (hd lhss)
val _ = if forall (fn m => length m = n) lhss then ()
else raise Fail "expected equal number of arguments"
fun to_coordinates (n, ts) =
case elimination_strategy ctxt ts of
[] => NONE
| (tco :: tcos) => SOME (n, fold term_coordinate_merge tcos tco |> coordinates_to_list)
fun add_T (n, xss) = map (fn (T, xs) => (T, (n, xs))) xss
val (typ_list, poss) = lhss
|> Ctr_Sugar_Util.transpose
|> map_index to_coordinates
|> map_filter (Option.map add_T)
|> flat
|> split_list
in
if null poss then ([], [], ctxt)
else terms_to_case ctxt (dest_Const #> ctr_count) head lhss rhss typ_list poss
end;
fun tac ctxt {splits, intros, defs} =
let
val split_and_subst =
split_tac ctxt splits
THEN' REPEAT_ALL_NEW (
resolve_tac ctxt [@{thm conjI}, @{thm allI}]
ORELSE'
(resolve_tac ctxt [@{thm impI}] THEN' hyp_subst_tac_thin true ctxt))
in
(REPEAT_ALL_NEW split_and_subst ORELSE' K all_tac)
THEN' (K (Local_Defs.unfold_tac ctxt [@{thm missing_pattern_match_def}]))
THEN' (K (Local_Defs.unfold_tac ctxt defs))
THEN_ALL_NEW (SOLVED' (resolve_tac ctxt (@{thm refl} :: intros)))
end;
fun to_case _ _ _ [] = NONE
| to_case ctxt replace_ctr ctr_count ths =
let
val strip_eq = Thm.prop_of #> HOLogic.dest_Trueprop #> HOLogic.dest_eq
fun import [] ctxt = ([], ctxt)
| import (thm :: thms) ctxt =
let
val fun_ct = strip_eq #> fst #> head_of #> Logic.mk_term #> Thm.cterm_of ctxt
val ct = fun_ct thm
val cts = map fun_ct thms
val pairs = map (fn s => (s,ct)) cts
val thms' = map (fn (th,p) => Thm.instantiate (Thm.match p) th) (thms ~~ pairs)
in
Variable.import true (thm :: thms') ctxt |> apfst snd
end
val (iths, ctxt') = import ths ctxt
val head = hd iths |> strip_eq |> fst |> head_of
val eqs = map (strip_eq #> apfst (snd o strip_comb)) iths
fun hide_rhs ((pat, rhs), name) lthy =
let
val frees = fold Term.add_frees pat []
val abs_rhs = fold absfree frees rhs
val (f, def, lthy') = case lthy
|> Local_Defs.define [((Binding.name name, NoSyn), (Binding.empty_atts, abs_rhs))] of
([(f, (_, def))], lthy') => (f, def, lthy')
| _ => raise Match
in
((list_comb (f, map Free (rev frees)), def), lthy')
end
val rhs_names = Name.invent (Variable.names_of ctxt') "rhs" (length eqs)
val ((def_ts, def_thms), ctxt2) =
fold_map hide_rhs (eqs ~~ rhs_names) ctxt' |> apfst split_list
val (ts, split_thms, ctxt3) = build_case_t replace_ctr ctr_count head
(map fst eqs) def_ts ctxt2
fun mk_thm t = Goal.prove ctxt3 [] [] t
(fn {context=ctxt, ...} => tac ctxt {splits=split_thms, intros=ths, defs=def_thms} 1)
in
if null ts then NONE
else
ts
|> map mk_thm
|> Proof_Context.export ctxt3 ctxt
|> map (Goal.norm_result ctxt)
|> SOME
end;
end