(* Title: HOL/Quotient_Examples/Lift_Fun.thy
Author: Ondrej Kuncar
*)
section \<open>Example of lifting definitions with contravariant or co/contravariant type variables\<close>
theory Lift_Fun
imports Main "HOL-Library.Quotient_Syntax"
begin
text \<open>This file is meant as a test case.
It contains examples of lifting definitions with quotients that have contravariant
type variables or type variables which are covariant and contravariant in the same time.\<close>
subsection \<open>Contravariant type variables\<close>
text \<open>'a is a contravariant type variable and we are able to map over this variable
in the following four definitions. This example is based on HOL/Fun.thy.\<close>
quotient_type
('a, 'b) fun' (infixr "\<rightarrow>" 55) = "'a \<Rightarrow> 'b" / "(=)"
by (simp add: identity_equivp)
quotient_definition "comp' :: ('b \<rightarrow> 'c) \<rightarrow> ('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'c" is
"comp :: ('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" done
quotient_definition "fcomp' :: ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" is
fcomp done
quotient_definition "map_fun' :: ('c \<rightarrow> 'a) \<rightarrow> ('b \<rightarrow> 'd) \<rightarrow> ('a \<rightarrow> 'b) \<rightarrow> 'c \<rightarrow> 'd"
is "map_fun::('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd" done
quotient_definition "inj_on' :: ('a \<rightarrow> 'b) \<rightarrow> 'a set \<rightarrow> bool" is inj_on done
quotient_definition "bij_betw' :: ('a \<rightarrow> 'b) \<rightarrow> 'a set \<rightarrow> 'b set \<rightarrow> bool" is bij_betw done
subsection \<open>Co/Contravariant type variables\<close>
text \<open>'a is a covariant and contravariant type variable in the same time.
The following example is a bit artificial. We haven't had a natural one yet.\<close>
quotient_type 'a endofun = "'a \<Rightarrow> 'a" / "(=)" by (simp add: identity_equivp)
definition map_endofun' :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> ('a => 'a) \<Rightarrow> ('b => 'b)"
where "map_endofun' f g e = map_fun g f e"
quotient_definition "map_endofun :: ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a endofun \<Rightarrow> 'b endofun" is
map_endofun' done
text \<open>Registration of the map function for 'a endofun.\<close>
functor map_endofun : map_endofun
proof -
have "\<forall> x. abs_endofun (rep_endofun x) = x" using Quotient3_endofun by (auto simp: Quotient3_def)
then show "map_endofun id id = id"
by (auto simp: map_endofun_def map_endofun'_def map_fun_def fun_eq_iff)
have a:"\<forall> x. rep_endofun (abs_endofun x) = x" using Quotient3_endofun
Quotient3_rep_abs[of "(=)" abs_endofun rep_endofun] by blast
show "\<And>f g h i. map_endofun f g \<circ> map_endofun h i = map_endofun (f \<circ> h) (i \<circ> g)"
by (auto simp: map_endofun_def map_endofun'_def map_fun_def fun_eq_iff) (simp add: a o_assoc)
qed
text \<open>Relator for 'a endofun.\<close>
definition
rel_endofun' :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> bool"
where
"rel_endofun' R = (\<lambda>f g. (R ===> R) f g)"
quotient_definition "rel_endofun :: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a endofun \<Rightarrow> 'b endofun \<Rightarrow> bool" is
rel_endofun' done
lemma endofun_quotient:
assumes a: "Quotient3 R Abs Rep"
shows "Quotient3 (rel_endofun R) (map_endofun Abs Rep) (map_endofun Rep Abs)"
proof (intro Quotient3I)
show "\<And>a. map_endofun Abs Rep (map_endofun Rep Abs a) = a"
by (metis (opaque_lifting, no_types) a abs_o_rep id_apply map_endofun.comp map_endofun.id o_eq_dest_lhs)
next
show "\<And>a. rel_endofun R (map_endofun Rep Abs a) (map_endofun Rep Abs a)"
using fun_quotient3[OF a a, THEN Quotient3_rep_reflp]
unfolding rel_endofun_def map_endofun_def map_fun_def o_def map_endofun'_def rel_endofun'_def id_def
by (metis (mono_tags) Quotient3_endofun rep_abs_rsp)
next
have abs_to_eq: "\<And> x y. abs_endofun x = abs_endofun y \<Longrightarrow> x = y"
by (drule arg_cong[where f=rep_endofun]) (simp add: Quotient3_rep_abs[OF Quotient3_endofun])
fix r s
show "rel_endofun R r s =
(rel_endofun R r r \<and>
rel_endofun R s s \<and> map_endofun Abs Rep r = map_endofun Abs Rep s)"
apply(auto simp add: rel_endofun_def rel_endofun'_def map_endofun_def map_endofun'_def)
using fun_quotient3[OF a a,THEN Quotient3_refl1]
apply metis
using fun_quotient3[OF a a,THEN Quotient3_refl2]
apply metis
using fun_quotient3[OF a a, THEN Quotient3_rel]
apply metis
by (auto intro: fun_quotient3[OF a a, THEN Quotient3_rel, THEN iffD1] simp add: abs_to_eq)
qed
declare [[mapQ3 endofun = (rel_endofun, endofun_quotient)]]
quotient_definition "endofun_id_id :: ('a endofun) endofun" is "id :: ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)" done
term endofun_id_id
thm endofun_id_id_def
quotient_type 'a endofun' = "'a endofun" / "(=)" by (simp add: identity_equivp)
text \<open>We have to map "'a endofun" to "('a endofun') endofun", i.e., mapping (lifting)
over a type variable which is a covariant and contravariant type variable.\<close>
quotient_definition "endofun'_id_id :: ('a endofun') endofun'" is endofun_id_id done
term endofun'_id_id
thm endofun'_id_id_def
end