src/CTT/rew.ML
author huffman
Tue, 11 May 2010 19:01:35 -0700
changeset 36841 02df88789641
parent 35762 af3ff2ba4c54
child 39159 0dec18004e75
permissions -rw-r--r--
include iszero_simps in semiring_norm just once (they are already included in rel_simps)

(*  Title:      CTT/rew.ML
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1991  University of Cambridge

Simplifier for CTT, using Typedsimp.
*)

(*Make list of ProdE RS ProdE ... RS ProdE RS EqE
  for using assumptions as rewrite rules*)
fun peEs 0 = []
  | peEs n = thm "EqE" :: map (curry (op RS) (thm "ProdE")) (peEs (n-1));

(*Tactic used for proving conditions for the cond_rls*)
val prove_cond_tac = eresolve_tac (peEs 5);


structure TSimp_data: TSIMP_DATA =
  struct
  val refl              = thm "refl_elem"
  val sym               = thm "sym_elem"
  val trans             = thm "trans_elem"
  val refl_red          = thm "refl_red"
  val trans_red         = thm "trans_red"
  val red_if_equal      = thm "red_if_equal"
  val default_rls       = thms "comp_rls"
  val routine_tac       = routine_tac (thms "routine_rls")
  end;

structure TSimp = TSimpFun (TSimp_data);

val standard_congr_rls = thms "intrL2_rls" @ thms "elimL_rls";

(*Make a rewriting tactic from a normalization tactic*)
fun make_rew_tac ntac =
    TRY eqintr_tac  THEN  TRYALL (resolve_tac [TSimp.split_eqn])  THEN  
    ntac;

fun rew_tac thms = make_rew_tac
    (TSimp.norm_tac(standard_congr_rls, thms));

fun hyp_rew_tac thms = make_rew_tac
    (TSimp.cond_norm_tac(prove_cond_tac, standard_congr_rls, thms));