include iszero_simps in semiring_norm just once (they are already included in rel_simps)
(* Title: CTT/rew.ML
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
Simplifier for CTT, using Typedsimp.
*)
(*Make list of ProdE RS ProdE ... RS ProdE RS EqE
for using assumptions as rewrite rules*)
fun peEs 0 = []
| peEs n = thm "EqE" :: map (curry (op RS) (thm "ProdE")) (peEs (n-1));
(*Tactic used for proving conditions for the cond_rls*)
val prove_cond_tac = eresolve_tac (peEs 5);
structure TSimp_data: TSIMP_DATA =
struct
val refl = thm "refl_elem"
val sym = thm "sym_elem"
val trans = thm "trans_elem"
val refl_red = thm "refl_red"
val trans_red = thm "trans_red"
val red_if_equal = thm "red_if_equal"
val default_rls = thms "comp_rls"
val routine_tac = routine_tac (thms "routine_rls")
end;
structure TSimp = TSimpFun (TSimp_data);
val standard_congr_rls = thms "intrL2_rls" @ thms "elimL_rls";
(*Make a rewriting tactic from a normalization tactic*)
fun make_rew_tac ntac =
TRY eqintr_tac THEN TRYALL (resolve_tac [TSimp.split_eqn]) THEN
ntac;
fun rew_tac thms = make_rew_tac
(TSimp.norm_tac(standard_congr_rls, thms));
fun hyp_rew_tac thms = make_rew_tac
(TSimp.cond_norm_tac(prove_cond_tac, standard_congr_rls, thms));