include iszero_simps in semiring_norm just once (they are already included in rel_simps)
(* Title: HOL/UNITY/PriorityAux
ID: $Id$
Author: Sidi O Ehmety, Cambridge University Computer Laboratory
Copyright 2001 University of Cambridge
Auxiliary definitions needed in Priority.thy
*)
theory PriorityAux
imports "../UNITY_Main"
begin
typedecl vertex
definition symcl :: "(vertex*vertex)set=>(vertex*vertex)set" where
"symcl r == r \<union> (r^-1)"
--{* symmetric closure: removes the orientation of a relation*}
definition neighbors :: "[vertex, (vertex*vertex)set]=>vertex set" where
"neighbors i r == ((r \<union> r^-1)``{i}) - {i}"
--{* Neighbors of a vertex i *}
definition R :: "[vertex, (vertex*vertex)set]=>vertex set" where
"R i r == r``{i}"
definition A :: "[vertex, (vertex*vertex)set]=>vertex set" where
"A i r == (r^-1)``{i}"
definition reach :: "[vertex, (vertex*vertex)set]=> vertex set" where
"reach i r == (r^+)``{i}"
--{* reachable and above vertices: the original notation was R* and A* *}
definition above :: "[vertex, (vertex*vertex)set]=> vertex set" where
"above i r == ((r^-1)^+)``{i}"
definition reverse :: "[vertex, (vertex*vertex) set]=>(vertex*vertex)set" where
"reverse i r == (r - {(x,y). x=i | y=i} \<inter> r) \<union> ({(x,y). x=i|y=i} \<inter> r)^-1"
definition derive1 :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool" where
--{* The original definition *}
"derive1 i r q == symcl r = symcl q &
(\<forall>k k'. k\<noteq>i & k'\<noteq>i -->((k,k'):r) = ((k,k'):q)) &
A i r = {} & R i q = {}"
definition derive :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool" where
--{* Our alternative definition *}
"derive i r q == A i r = {} & (q = reverse i r)"
axioms
finite_vertex_univ: "finite (UNIV :: vertex set)"
--{* we assume that the universe of vertices is finite *}
declare derive_def [simp] derive1_def [simp] symcl_def [simp]
A_def [simp] R_def [simp]
above_def [simp] reach_def [simp]
reverse_def [simp] neighbors_def [simp]
text{*All vertex sets are finite*}
declare finite_subset [OF subset_UNIV finite_vertex_univ, iff]
text{* and relatons over vertex are finite too *}
lemmas finite_UNIV_Prod =
finite_Prod_UNIV [OF finite_vertex_univ finite_vertex_univ]
declare finite_subset [OF subset_UNIV finite_UNIV_Prod, iff]
(* The equalities (above i r = {}) = (A i r = {})
and (reach i r = {}) = (R i r) rely on the following theorem *)
lemma image0_trancl_iff_image0_r: "((r^+)``{i} = {}) = (r``{i} = {})"
apply auto
apply (erule trancl_induct, auto)
done
(* Another form usefull in some situation *)
lemma image0_r_iff_image0_trancl: "(r``{i}={}) = (ALL x. ((i,x):r^+) = False)"
apply auto
apply (drule image0_trancl_iff_image0_r [THEN ssubst], auto)
done
(* In finite universe acyclic coincides with wf *)
lemma acyclic_eq_wf: "!!r::(vertex*vertex)set. acyclic r = wf r"
by (auto simp add: wf_iff_acyclic_if_finite)
(* derive and derive1 are equivalent *)
lemma derive_derive1_eq: "derive i r q = derive1 i r q"
by auto
(* Lemma 1 *)
lemma lemma1_a:
"[| x \<in> reach i q; derive1 k r q |] ==> x\<noteq>k --> x \<in> reach i r"
apply (unfold reach_def)
apply (erule ImageE)
apply (erule trancl_induct)
apply (case_tac "i=k", simp_all)
apply (blast intro: r_into_trancl, blast, clarify)
apply (drule_tac x = y in spec)
apply (drule_tac x = z in spec)
apply (blast dest: r_into_trancl intro: trancl_trans)
done
lemma reach_lemma: "derive k r q ==> reach i q \<subseteq> (reach i r \<union> {k})"
apply clarify
apply (drule lemma1_a)
apply (auto simp add: derive_derive1_eq
simp del: reach_def derive_def derive1_def)
done
(* An other possible formulation of the above theorem based on
the equivalence x \<in> reach y r = y \<in> above x r *)
lemma reach_above_lemma:
"(\<forall>i. reach i q \<subseteq> (reach i r \<union> {k})) =
(\<forall>x. x\<noteq>k --> (\<forall>i. i \<notin> above x r --> i \<notin> above x q))"
by (auto simp add: trancl_converse)
(* Lemma 2 *)
lemma maximal_converse_image0:
"(z, i):r^+ ==> (\<forall>y. (y, z):r --> (y,i) \<notin> r^+) = ((r^-1)``{z}={})"
apply auto
apply (frule_tac r = r in trancl_into_trancl2, auto)
done
lemma above_lemma_a:
"acyclic r ==> A i r\<noteq>{}-->(\<exists>j \<in> above i r. A j r = {})"
apply (simp add: acyclic_eq_wf wf_eq_minimal)
apply (drule_tac x = " ((r^-1) ^+) ``{i}" in spec)
apply auto
apply (simp add: maximal_converse_image0 trancl_converse)
done
lemma above_lemma_b:
"acyclic r ==> above i r\<noteq>{}-->(\<exists>j \<in> above i r. above j r = {})";
apply (drule above_lemma_a)
apply (auto simp add: image0_trancl_iff_image0_r)
done
end