src/HOL/ex/Unification.thy
author krauss
Sun, 21 Aug 2011 22:13:04 +0200
changeset 44369 02e13192a053
parent 44368 91e8062605d5
child 44370 03d91bfad83b
permissions -rw-r--r--
tuned notation

(*
    Author:     Alexander Krauss, Technische Universitaet Muenchen
*)

header {* Case study: Unification Algorithm *}

theory Unification
imports Main
begin

text {* 
  This is a formalization of a first-order unification
  algorithm. It uses the new "function" package to define recursive
  functions, which allows a better treatment of nested recursion. 

  This is basically a modernized version of a previous formalization
  by Konrad Slind (see: HOL/Subst/Unify.thy), which itself builds on
  previous work by Paulson and Manna \& Waldinger (for details, see
  there).

  Unlike that formalization, where the proofs of termination and
  some partial correctness properties are intertwined, we can prove
  partial correctness and termination separately.
*}


subsection {* Terms *}

text {* Binary trees with leaves that are constants or variables. *}

datatype 'a trm = 
  Var 'a 
  | Const 'a
  | Comb "'a trm" "'a trm" (infix "\<cdot>" 60)

primrec vars_of :: "'a trm \<Rightarrow> 'a set"
where
  "vars_of (Var v) = {v}"
| "vars_of (Const c) = {}"
| "vars_of (M \<cdot> N) = vars_of M \<union> vars_of N"

fun occs :: "'a trm \<Rightarrow> 'a trm \<Rightarrow> bool" (infixl "\<prec>" 54) 
where
  "u \<prec> Var v \<longleftrightarrow> False"
| "u \<prec> Const c \<longleftrightarrow> False"
| "u \<prec> M \<cdot> N \<longleftrightarrow> u = M \<or> u = N \<or> u \<prec> M \<or> u \<prec> N"


lemma finite_vars_of[intro]: "finite (vars_of t)"
  by (induct t) simp_all

lemma vars_var_iff: "v \<in> vars_of (Var w) \<longleftrightarrow> w = v"
  by auto

lemma vars_iff_occseq: "x \<in> vars_of t \<longleftrightarrow> Var x \<prec> t \<or> Var x = t"
  by (induct t) auto

lemma occs_vars_subset: "M \<prec> N \<Longrightarrow> vars_of M \<subseteq> vars_of N"
  by (induct N) auto


subsection {* Substitutions *}

type_synonym 'a subst = "('a \<times> 'a trm) list"

text {* Applying a substitution to a variable: *}

fun assoc :: "'a \<Rightarrow> 'b \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> 'b"
where
  "assoc x d [] = d"
| "assoc x d ((p,q)#t) = (if x = p then q else assoc x d t)"

text {* Applying a substitution to a term: *}

primrec subst :: "'a trm \<Rightarrow> 'a subst \<Rightarrow> 'a trm" (infixl "\<lhd>" 55)
where
  "(Var v) \<lhd> s = assoc v (Var v) s"
| "(Const c) \<lhd> s = (Const c)"
| "(M \<cdot> N) \<lhd> s = (M \<lhd> s) \<cdot> (N \<lhd> s)"

definition subst_eq (infixr "\<doteq>" 52)
where
  "s1 \<doteq> s2 \<longleftrightarrow> (\<forall>t. t \<lhd> s1 = t \<lhd> s2)" 

fun comp :: "'a subst \<Rightarrow> 'a subst \<Rightarrow> 'a subst" (infixl "\<lozenge>" 56)
where
  "[] \<lozenge> bl = bl"
| "((a,b) # al) \<lozenge> bl = (a, b \<lhd> bl) # (al \<lozenge> bl)"


subsection {* Basic Laws *}

lemma subst_Nil[simp]: "t \<lhd> [] = t"
by (induct t) auto

lemma subst_mono: "t \<prec> u \<Longrightarrow> t \<lhd> s \<prec> u \<lhd> s"
by (induct u) auto

lemma agreement: "(t \<lhd> r = t \<lhd> s) \<longleftrightarrow> (\<forall>v \<in> vars_of t. Var v \<lhd> r = Var v \<lhd> s)"
by (induct t) auto

lemma repl_invariance: "v \<notin> vars_of t \<Longrightarrow> t \<lhd> (v,u) # s = t \<lhd> s"
by (simp add: agreement)

lemma Var_in_subst:
  "v \<in> vars_of t \<Longrightarrow> w \<in> vars_of (t \<lhd> (v, Var(w)) # s)"
by (induct t) auto

lemma subst_refl[iff]: "s \<doteq> s"
  by (auto simp:subst_eq_def)

lemma subst_sym[sym]: "\<lbrakk>s1 \<doteq> s2\<rbrakk> \<Longrightarrow> s2 \<doteq> s1"
  by (auto simp:subst_eq_def)

lemma subst_trans[trans]: "\<lbrakk>s1 \<doteq> s2; s2 \<doteq> s3\<rbrakk> \<Longrightarrow> s1 \<doteq> s3"
  by (auto simp:subst_eq_def)

text {* Composition of Substitutions *}


lemma comp_Nil[simp]: "\<sigma> \<lozenge> [] = \<sigma>"
by (induct \<sigma>) auto

lemma subst_comp[simp]: "t \<lhd> (r \<lozenge> s) = t \<lhd> r \<lhd> s"
proof (induct t)
  case (Var v) thus ?case
    by (induct r) auto
qed auto

lemma subst_eq_intro[intro]: "(\<And>t. t \<lhd> \<sigma> = t \<lhd> \<theta>) \<Longrightarrow> \<sigma> \<doteq> \<theta>"
  by (auto simp:subst_eq_def)

lemma subst_eq_dest[dest]: "s1 \<doteq> s2 \<Longrightarrow> t \<lhd> s1 = t \<lhd> s2"
  by (auto simp:subst_eq_def)

lemma comp_assoc: "(a \<lozenge> b) \<lozenge> c \<doteq> a \<lozenge> (b \<lozenge> c)"
  by auto

lemma subst_cong: "\<lbrakk>\<sigma> \<doteq> \<sigma>'; \<theta> \<doteq> \<theta>'\<rbrakk> \<Longrightarrow> (\<sigma> \<lozenge> \<theta>) \<doteq> (\<sigma>' \<lozenge> \<theta>')"
  by (auto simp: subst_eq_def)



subsection {* Specification: Most general unifiers *}

definition Unifier :: "'a subst \<Rightarrow> 'a trm \<Rightarrow> 'a trm \<Rightarrow> bool"
where "Unifier \<sigma> t u \<longleftrightarrow> (t \<lhd> \<sigma> = u \<lhd> \<sigma>)"

definition MGU :: "'a subst \<Rightarrow> 'a trm \<Rightarrow> 'a trm \<Rightarrow> bool" where
  "MGU \<sigma> t u \<longleftrightarrow> 
   Unifier \<sigma> t u \<and> (\<forall>\<theta>. Unifier \<theta> t u \<longrightarrow> (\<exists>\<gamma>. \<theta> \<doteq> \<sigma> \<lozenge> \<gamma>))"

lemma MGUI[intro]:
  "\<lbrakk>t \<lhd> \<sigma> = u \<lhd> \<sigma>; \<And>\<theta>. t \<lhd> \<theta> = u \<lhd> \<theta> \<Longrightarrow> \<exists>\<gamma>. \<theta> \<doteq> \<sigma> \<lozenge> \<gamma>\<rbrakk>
  \<Longrightarrow> MGU \<sigma> t u"
  by (simp only:Unifier_def MGU_def, auto)

lemma MGU_sym[sym]:
  "MGU \<sigma> s t \<Longrightarrow> MGU \<sigma> t s"
  by (auto simp:MGU_def Unifier_def)


definition Idem :: "'a subst \<Rightarrow> bool"
where "Idem s \<longleftrightarrow> (s \<lozenge> s) \<doteq> s"



subsection {* The unification algorithm *}


text {* The unification algorithm: *}

function unify :: "'a trm \<Rightarrow> 'a trm \<Rightarrow> 'a subst option"
where
  "unify (Const c) (M \<cdot> N)   = None"
| "unify (M \<cdot> N)   (Const c) = None"
| "unify (Const c) (Var v)   = Some [(v, Const c)]"
| "unify (M \<cdot> N)   (Var v)   = (if Var v \<prec> M \<cdot> N 
                                        then None
                                        else Some [(v, M \<cdot> N)])"
| "unify (Var v)   M         = (if Var v \<prec> M
                                        then None
                                        else Some [(v, M)])"
| "unify (Const c) (Const d) = (if c=d then Some [] else None)"
| "unify (M \<cdot> N) (M' \<cdot> N') = (case unify M M' of
                                    None \<Rightarrow> None |
                                    Some \<theta> \<Rightarrow> (case unify (N \<lhd> \<theta>) (N' \<lhd> \<theta>)
                                      of None \<Rightarrow> None |
                                         Some \<sigma> \<Rightarrow> Some (\<theta> \<lozenge> \<sigma>)))"
  by pat_completeness auto

declare unify.psimps[simp]

subsection {* Partial correctness *}

text {* Some lemmas about occs and MGU: *}

lemma subst_no_occs: "\<not> Var v \<prec> t \<Longrightarrow> Var v \<noteq> t
  \<Longrightarrow> t \<lhd> [(v,s)] = t"
by (induct t) auto

lemma MGU_Var[intro]: 
  assumes no_occs: "\<not> Var v \<prec> t"
  shows "MGU [(v,t)] (Var v) t"
proof (intro MGUI exI)
  show "Var v \<lhd> [(v,t)] = t \<lhd> [(v,t)]" using no_occs
    by (cases "Var v = t", auto simp:subst_no_occs)
next
  fix \<theta> assume th: "Var v \<lhd> \<theta> = t \<lhd> \<theta>" 
  show "\<theta> \<doteq> [(v,t)] \<lozenge> \<theta>" 
  proof
    fix s show "s \<lhd> \<theta> = s \<lhd> [(v,t)] \<lozenge> \<theta>" using th 
      by (induct s) auto
  qed
qed

declare MGU_Var[symmetric, intro]

lemma MGU_Const[simp]: "MGU [] (Const c) (Const d) = (c = d)"
  unfolding MGU_def Unifier_def
  by auto
  
text {* If unification terminates, then it computes most general unifiers: *}

lemma unify_partial_correctness:
  assumes "unify_dom (M, N)"
  assumes "unify M N = Some \<sigma>"
  shows "MGU \<sigma> M N"
using assms
proof (induct M N arbitrary: \<sigma>)
  case (7 M N M' N' \<sigma>) -- "The interesting case"

  then obtain \<theta>1 \<theta>2 
    where "unify M M' = Some \<theta>1"
    and "unify (N \<lhd> \<theta>1) (N' \<lhd> \<theta>1) = Some \<theta>2"
    and \<sigma>: "\<sigma> = \<theta>1 \<lozenge> \<theta>2"
    and MGU_inner: "MGU \<theta>1 M M'" 
    and MGU_outer: "MGU \<theta>2 (N \<lhd> \<theta>1) (N' \<lhd> \<theta>1)"
    by (auto split:option.split_asm)

  show ?case
  proof
    from MGU_inner and MGU_outer
    have "M \<lhd> \<theta>1 = M' \<lhd> \<theta>1" 
      and "N \<lhd> \<theta>1 \<lhd> \<theta>2 = N' \<lhd> \<theta>1 \<lhd> \<theta>2"
      unfolding MGU_def Unifier_def
      by auto
    thus "M \<cdot> N \<lhd> \<sigma> = M' \<cdot> N' \<lhd> \<sigma>" unfolding \<sigma>
      by simp
  next
    fix \<sigma>' assume "M \<cdot> N \<lhd> \<sigma>' = M' \<cdot> N' \<lhd> \<sigma>'"
    hence "M \<lhd> \<sigma>' = M' \<lhd> \<sigma>'"
      and Ns: "N \<lhd> \<sigma>' = N' \<lhd> \<sigma>'" by auto

    with MGU_inner obtain \<delta>
      where eqv: "\<sigma>' \<doteq> \<theta>1 \<lozenge> \<delta>"
      unfolding MGU_def Unifier_def
      by auto

    from Ns have "N \<lhd> \<theta>1 \<lhd> \<delta> = N' \<lhd> \<theta>1 \<lhd> \<delta>"
      by (simp add:subst_eq_dest[OF eqv])

    with MGU_outer obtain \<rho>
      where eqv2: "\<delta> \<doteq> \<theta>2 \<lozenge> \<rho>"
      unfolding MGU_def Unifier_def
      by auto
    
    have "\<sigma>' \<doteq> \<sigma> \<lozenge> \<rho>" unfolding \<sigma>
      by (rule subst_eq_intro, auto simp:subst_eq_dest[OF eqv] subst_eq_dest[OF eqv2])
    thus "\<exists>\<gamma>. \<sigma>' \<doteq> \<sigma> \<lozenge> \<gamma>" ..
  qed
qed (auto split:split_if_asm) -- "Solve the remaining cases automatically"


subsection {* Properties used in termination proof *}


text {* Elimination of variables by a substitution: *}

definition
  "elim \<sigma> v \<equiv> \<forall>t. v \<notin> vars_of (t \<lhd> \<sigma>)"

lemma elim_intro[intro]: "(\<And>t. v \<notin> vars_of (t \<lhd> \<sigma>)) \<Longrightarrow> elim \<sigma> v"
  by (auto simp:elim_def)

lemma elim_dest[dest]: "elim \<sigma> v \<Longrightarrow> v \<notin> vars_of (t \<lhd> \<sigma>)"
  by (auto simp:elim_def)

lemma elim_eqv: "\<sigma> \<doteq> \<theta> \<Longrightarrow> elim \<sigma> x = elim \<theta> x"
  by (auto simp:elim_def subst_eq_def)


text {* Replacing a variable by itself yields an identity subtitution: *}

lemma var_self[intro]: "[(v, Var v)] \<doteq> []"
proof
  fix t show "t \<lhd> [(v, Var v)] = t \<lhd> []"
    by (induct t) simp_all
qed

lemma var_same: "([(v, t)] \<doteq> []) = (t = Var v)"
proof
  assume t_v: "t = Var v"
  thus "[(v, t)] \<doteq> []"
    by auto
next
  assume id: "[(v, t)] \<doteq> []"
  show "t = Var v"
  proof -
    have "t = Var v \<lhd> [(v, t)]" by simp
    also from id have "\<dots> = Var v \<lhd> []" ..
    finally show ?thesis by simp
  qed
qed

text {* A lemma about occs and elim *}

lemma remove_var:
  assumes [simp]: "v \<notin> vars_of s"
  shows "v \<notin> vars_of (t \<lhd> [(v, s)])"
  by (induct t) simp_all

lemma occs_elim: "\<not> Var v \<prec> t 
  \<Longrightarrow> elim [(v,t)] v \<or> [(v,t)] \<doteq> []"
proof (induct t)
  case (Var x)
  show ?case
  proof cases
    assume "v = x"
    thus ?thesis
      by (simp add:var_same)
  next
    assume neq: "v \<noteq> x"
    have "elim [(v, Var x)] v"
      by (auto intro!:remove_var simp:neq)
    thus ?thesis ..
  qed
next
  case (Const c)
  have "elim [(v, Const c)] v"
    by (auto intro!:remove_var)
  thus ?case ..
next
  case (Comb M N)
  
  hence ih1: "elim [(v, M)] v \<or> [(v, M)] \<doteq> []"
    and ih2: "elim [(v, N)] v \<or> [(v, N)] \<doteq> []"
    and nonoccs: "Var v \<noteq> M" "Var v \<noteq> N"
    by auto

  from nonoccs have "\<not> [(v,M)] \<doteq> []"
    by (simp add:var_same)
  with ih1 have "elim [(v, M)] v" by blast
  hence "v \<notin> vars_of (Var v \<lhd> [(v,M)])" ..
  hence not_in_M: "v \<notin> vars_of M" by simp

  from nonoccs have "\<not> [(v,N)] \<doteq> []"
    by (simp add:var_same)
  with ih2 have "elim [(v, N)] v" by blast
  hence "v \<notin> vars_of (Var v \<lhd> [(v,N)])" ..
  hence not_in_N: "v \<notin> vars_of N" by simp

  have "elim [(v, M \<cdot> N)] v"
  proof 
    fix t 
    show "v \<notin> vars_of (t \<lhd> [(v, M \<cdot> N)])"
    proof (induct t)
      case (Var x) thus ?case by (simp add: not_in_M not_in_N)
    qed auto
  qed
  thus ?case ..
qed

text {* The result of a unification never introduces new variables: *}

lemma unify_vars: 
  assumes "unify_dom (M, N)"
  assumes "unify M N = Some \<sigma>"
  shows "vars_of (t \<lhd> \<sigma>) \<subseteq> vars_of M \<union> vars_of N \<union> vars_of t"
  (is "?P M N \<sigma> t")
using assms
proof (induct M N arbitrary:\<sigma> t)
  case (3 c v) 
  hence "\<sigma> = [(v, Const c)]" by simp
  thus ?case by (induct t) auto
next
  case (4 M N v) 
  hence "\<not> Var v \<prec> M \<cdot> N" by auto
  with 4 have "\<sigma> = [(v, M\<cdot>N)]" by simp
  thus ?case by (induct t) auto
next
  case (5 v M)
  hence "\<not> Var v \<prec> M" by auto
  with 5 have "\<sigma> = [(v, M)]" by simp
  thus ?case by (induct t) auto
next
  case (7 M N M' N' \<sigma>)
  then obtain \<theta>1 \<theta>2 
    where "unify M M' = Some \<theta>1"
    and "unify (N \<lhd> \<theta>1) (N' \<lhd> \<theta>1) = Some \<theta>2"
    and \<sigma>: "\<sigma> = \<theta>1 \<lozenge> \<theta>2"
    and ih1: "\<And>t. ?P M M' \<theta>1 t"
    and ih2: "\<And>t. ?P (N\<lhd>\<theta>1) (N'\<lhd>\<theta>1) \<theta>2 t"
    by (auto split:option.split_asm)

  show ?case
  proof
    fix v assume a: "v \<in> vars_of (t \<lhd> \<sigma>)"
    
    show "v \<in> vars_of (M \<cdot> N) \<union> vars_of (M' \<cdot> N') \<union> vars_of t"
    proof (cases "v \<notin> vars_of M \<and> v \<notin> vars_of M'
        \<and> v \<notin> vars_of N \<and> v \<notin> vars_of N'")
      case True
      with ih1 have l:"\<And>t. v \<in> vars_of (t \<lhd> \<theta>1) \<Longrightarrow> v \<in> vars_of t"
        by auto
      
      from a and ih2[where t="t \<lhd> \<theta>1"]
      have "v \<in> vars_of (N \<lhd> \<theta>1) \<union> vars_of (N' \<lhd> \<theta>1) 
        \<or> v \<in> vars_of (t \<lhd> \<theta>1)" unfolding \<sigma>
        by auto
      hence "v \<in> vars_of t"
      proof
        assume "v \<in> vars_of (N \<lhd> \<theta>1) \<union> vars_of (N' \<lhd> \<theta>1)"
        with True show ?thesis by (auto dest:l)
      next
        assume "v \<in> vars_of (t \<lhd> \<theta>1)" 
        thus ?thesis by (rule l)
      qed
      
      thus ?thesis by auto
    qed auto
  qed
qed (auto split: split_if_asm)


text {* The result of a unification is either the identity
substitution or it eliminates a variable from one of the terms: *}

lemma unify_eliminates: 
  assumes "unify_dom (M, N)"
  assumes "unify M N = Some \<sigma>"
  shows "(\<exists>v\<in>vars_of M \<union> vars_of N. elim \<sigma> v) \<or> \<sigma> \<doteq> []"
  (is "?P M N \<sigma>")
using assms
proof (induct M N arbitrary:\<sigma>)
  case 1 thus ?case by simp
next
  case 2 thus ?case by simp
next
  case (3 c v)
  have no_occs: "\<not> Var v \<prec> Const c" by simp
  with 3 have "\<sigma> = [(v, Const c)]" by simp
  with occs_elim[OF no_occs]
  show ?case by auto
next
  case (4 M N v)
  hence no_occs: "\<not> Var v \<prec> M \<cdot> N" by auto
  with 4 have "\<sigma> = [(v, M\<cdot>N)]" by simp
  with occs_elim[OF no_occs]
  show ?case by auto 
next
  case (5 v M) 
  hence no_occs: "\<not> Var v \<prec> M" by auto
  with 5 have "\<sigma> = [(v, M)]" by simp
  with occs_elim[OF no_occs]
  show ?case by auto 
next 
  case (6 c d) thus ?case
    by (cases "c = d") auto
next
  case (7 M N M' N' \<sigma>)
  then obtain \<theta>1 \<theta>2 
    where "unify M M' = Some \<theta>1"
    and "unify (N \<lhd> \<theta>1) (N' \<lhd> \<theta>1) = Some \<theta>2"
    and \<sigma>: "\<sigma> = \<theta>1 \<lozenge> \<theta>2"
    and ih1: "?P M M' \<theta>1"
    and ih2: "?P (N\<lhd>\<theta>1) (N'\<lhd>\<theta>1) \<theta>2"
    by (auto split:option.split_asm)

  from `unify_dom (M \<cdot> N, M' \<cdot> N')`
  have "unify_dom (M, M')"
    by (rule accp_downward) (rule unify_rel.intros)
  hence no_new_vars: 
    "\<And>t. vars_of (t \<lhd> \<theta>1) \<subseteq> vars_of M \<union> vars_of M' \<union> vars_of t"
    by (rule unify_vars) (rule `unify M M' = Some \<theta>1`)

  from ih2 show ?case 
  proof 
    assume "\<exists>v\<in>vars_of (N \<lhd> \<theta>1) \<union> vars_of (N' \<lhd> \<theta>1). elim \<theta>2 v"
    then obtain v 
      where "v\<in>vars_of (N \<lhd> \<theta>1) \<union> vars_of (N' \<lhd> \<theta>1)"
      and el: "elim \<theta>2 v" by auto
    with no_new_vars show ?thesis unfolding \<sigma> 
      by (auto simp:elim_def)
  next
    assume empty[simp]: "\<theta>2 \<doteq> []"

    have "\<sigma> \<doteq> (\<theta>1 \<lozenge> [])" unfolding \<sigma>
      by (rule subst_cong) auto
    also have "\<dots> \<doteq> \<theta>1" by auto
    finally have "\<sigma> \<doteq> \<theta>1" .

    from ih1 show ?thesis
    proof
      assume "\<exists>v\<in>vars_of M \<union> vars_of M'. elim \<theta>1 v"
      with elim_eqv[OF `\<sigma> \<doteq> \<theta>1`]
      show ?thesis by auto
    next
      note `\<sigma> \<doteq> \<theta>1`
      also assume "\<theta>1 \<doteq> []"
      finally show ?thesis ..
    qed
  qed
qed


subsection {* Termination proof *}

termination unify
proof 
  let ?R = "measures [\<lambda>(M,N). card (vars_of M \<union> vars_of N),
                           \<lambda>(M, N). size M]"
  show "wf ?R" by simp

  fix M N M' N' 
  show "((M, M'), (M \<cdot> N, M' \<cdot> N')) \<in> ?R" -- "Inner call"
    by (rule measures_lesseq) (auto intro: card_mono)

  fix \<theta>                                   -- "Outer call"
  assume inner: "unify_dom (M, M')"
    "unify M M' = Some \<theta>"

  from unify_eliminates[OF inner]
  show "((N \<lhd> \<theta>, N' \<lhd> \<theta>), (M \<cdot> N, M' \<cdot> N')) \<in>?R"
  proof
    -- {* Either a variable is eliminated \ldots *}
    assume "(\<exists>v\<in>vars_of M \<union> vars_of M'. elim \<theta> v)"
    then obtain v 
      where "elim \<theta> v" 
      and "v\<in>vars_of M \<union> vars_of M'" by auto
    with unify_vars[OF inner]
    have "vars_of (N\<lhd>\<theta>) \<union> vars_of (N'\<lhd>\<theta>)
      \<subset> vars_of (M\<cdot>N) \<union> vars_of (M'\<cdot>N')"
      by auto
    
    thus ?thesis
      by (auto intro!: measures_less intro: psubset_card_mono)
  next
    -- {* Or the substitution is empty *}
    assume "\<theta> \<doteq> []"
    hence "N \<lhd> \<theta> = N" 
      and "N' \<lhd> \<theta> = N'" by auto
    thus ?thesis 
       by (auto intro!: measures_less intro: psubset_card_mono)
  qed
qed

declare unify.psimps[simp del]

end