src/ZF/zf.thy
author nipkow
Fri, 10 May 2002 18:00:48 +0200
changeset 13133 03d20664cb79
parent 80 0d10b8a501d5
permissions -rw-r--r--
A new theory of pointer program examples

(*  Title:      ZF/zf.thy
    ID:         $Id$
    Author:     Lawrence C Paulson and Martin D Coen, CU Computer Laboratory
    Copyright   1993  University of Cambridge

Zermelo-Fraenkel Set Theory
*)

ZF = FOL +

types
  i, is 0

arities
  i :: term


consts

  "0"           :: "i"                          ("0") (*the empty set*)
  Pow           :: "i => i"                         (*power sets*)
  Inf           :: "i"                              (*infinite set*)

  (* Bounded Quantifiers *)

  "@Ball"       :: "[idt, i, o] => o"           ("(3ALL _:_./ _)" 10)
  "@Bex"        :: "[idt, i, o] => o"           ("(3EX _:_./ _)" 10)
  Ball          :: "[i, i => o] => o"
  Bex           :: "[i, i => o] => o"

  (* General Union and Intersection *)

  "@INTER"      :: "[idt, i, i] => i"           ("(3INT _:_./ _)" 10)
  "@UNION"      :: "[idt, i, i] => i"           ("(3UN _:_./ _)" 10)
  Union, Inter  :: "i => i"

  (* Variations on Replacement *)

  "@Replace"    :: "[idt, idt, i, o] => i"      ("(1{_ ./ _: _, _})")
  "@RepFun"     :: "[i, idt, i] => i"           ("(1{_ ./ _: _})")
  "@Collect"    :: "[idt, i, o] => i"           ("(1{_: _ ./ _})")
  PrimReplace   :: "[i, [i, i] => o] => i"
  Replace       :: "[i, [i, i] => o] => i"
  RepFun        :: "[i, i => i] => i"
  Collect       :: "[i, i => o] => i"

  (* Descriptions *)

  The           :: "(i => o) => i"              (binder "THE " 10)
  if            :: "[o, i, i] => i"

  (* Enumerations of type i *)

  ""            :: "i => is"                    ("_")
  "@Enum"       :: "[i, is] => is"              ("_,/ _")

  (* Finite Sets *)

  "@Finset"     :: "is => i"                    ("{(_)}")
  Upair, cons   :: "[i, i] => i"
  succ          :: "i => i"

  (* Ordered Pairing and n-Tuples *)

  "@Tuple"      :: "[i, is] => i"               ("<(_,/ _)>")
  Pair          :: "[i, i] => i"
  fst, snd      :: "i => i"
  split         :: "[[i, i] => i, i] => i"
  fsplit        :: "[[i, i] => o, i] => o"

  (* Sigma and Pi Operators *)

  "@PROD"       :: "[idt, i, i] => i"           ("(3PROD _:_./ _)" 10)
  "@SUM"        :: "[idt, i, i] => i"           ("(3SUM _:_./ _)" 10)
  "@lam"        :: "[idt, i, i] => i"           ("(3lam _:_./ _)" 10)
  Pi, Sigma     :: "[i, i => i] => i"

  (* Relations and Functions *)

  domain        :: "i => i"
  range         :: "i => i"
  field         :: "i => i"
  converse      :: "i => i"
  Lambda        :: "[i, i => i] => i"
  restrict      :: "[i, i] => i"

  (* Infixes in order of decreasing precedence *)

  "``"  :: "[i, i] => i"    (infixl 90) (*image*)
  "-``" :: "[i, i] => i"    (infixl 90) (*inverse image*)
  "`"   :: "[i, i] => i"    (infixl 90) (*function application*)

  (*Except for their translations, * and -> are right and ~: left associative infixes*)
  " *"  :: "[i, i] => i"    ("(_ */ _)" [81, 80] 80) (*Cartesian product*)
  "Int" :: "[i, i] => i"    (infixl 70) (*binary intersection*)
  "Un"  :: "[i, i] => i"    (infixl 65) (*binary union*)
  "-"   :: "[i, i] => i"    (infixl 65) (*set difference*)
  " ->" :: "[i, i] => i"    ("(_ ->/ _)" [61, 60] 60) (*function space*)
  "<="  :: "[i, i] => o"    (infixl 50) (*subset relation*)
  ":"   :: "[i, i] => o"    (infixl 50) (*membership relation*)
  "~:"  :: "[i, i] => o"    ("(_ ~:/ _)" [50, 51] 50) (*negated membership relation*)


translations
  "{x, xs}"     == "cons(x, {xs})"
  "{x}"         == "cons(x, 0)"
  "<x, y, z>"   == "<x, <y, z>>"
  "<x, y>"      == "Pair(x, y)"
  "{x:A. P}"    == "Collect(A, %x. P)"
  "{y. x:A, Q}" == "Replace(A, %x y. Q)"
  "{f. x:A}"    == "RepFun(A, %x. f)"
  "INT x:A. B"  == "Inter({B. x:A})"
  "UN x:A. B"   == "Union({B. x:A})"
  "PROD x:A. B" => "Pi(A, %x. B)"
  "SUM x:A. B"  => "Sigma(A, %x. B)"
  "A -> B"      => "Pi(A, _K(B))"
  "A * B"       => "Sigma(A, _K(B))"
  "lam x:A. f"  == "Lambda(A, %x. f)"
  "ALL x:A. P"  == "Ball(A, %x. P)"
  "EX x:A. P"   == "Bex(A, %x. P)"
  "x ~: y"      == "~ (x : y)"


rules

 (* Bounded Quantifiers *)
Ball_def        "Ball(A,P) == ALL x. x:A --> P(x)"
Bex_def         "Bex(A,P) == EX x. x:A & P(x)"
subset_def      "A <= B == ALL x:A. x:B"

 (* ZF axioms -- see Suppes p.238
    Axioms for Union, Pow and Replace state existence only,
        uniqueness is derivable using extensionality.  *)

extension       "A = B <-> A <= B & B <= A"
union_iff       "A : Union(C) <-> (EX B:C. A:B)"
power_set       "A : Pow(B) <-> A <= B"
succ_def        "succ(i) == cons(i,i)"

 (*We may name this set, though it is not uniquely defined. *)
infinity        "0:Inf & (ALL y:Inf. succ(y): Inf)"

 (*This formulation facilitates case analysis on A. *)
foundation      "A=0 | (EX x:A. ALL y:x. y~:A)"

 (* Schema axiom since predicate P is a higher-order variable *)
replacement     "(ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==> \
\                        b : PrimReplace(A,P) <-> (EX x:A. P(x,b))"

 (* Derived form of replacement, restricting P to its functional part.
    The resulting set (for functional P) is the same as with
    PrimReplace, but the rules are simpler. *)
Replace_def     "Replace(A,P) == PrimReplace(A, %x y. (EX!z.P(x,z)) & P(x,y))"

 (* Functional form of replacement -- analgous to ML's map functional *)
RepFun_def      "RepFun(A,f) == {y . x:A, y=f(x)}"

 (* Separation and Pairing can be derived from the Replacement
    and Powerset Axioms using the following definitions.  *)

Collect_def     "Collect(A,P) == {y . x:A, x=y & P(x)}"

 (*Unordered pairs (Upair) express binary union/intersection and cons;
   set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)  *)
Upair_def   "Upair(a,b) == {y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"
cons_def    "cons(a,A) == Upair(a,a) Un A"

 (* Difference, general intersection, binary union and small intersection *)

Diff_def        "A - B    == { x:A . ~(x:B) }"
Inter_def       "Inter(A) == { x:Union(A) . ALL y:A. x:y}"
Un_def          "A Un  B  == Union(Upair(A,B))"
Int_def         "A Int B  == Inter(Upair(A,B))"

 (* Definite descriptions -- via Replace over the set "1" *)

the_def         "The(P)    == Union({y . x:{0}, P(y)})"
if_def          "if(P,a,b) == THE z. P & z=a | ~P & z=b"

 (* Ordered pairs and disjoint union of a family of sets *)

 (* this "symmetric" definition works better than {{a}, {a,b}} *)
Pair_def        "<a,b>  == {{a,a}, {a,b}}"
fst_def         "fst == split(%x y.x)"
snd_def         "snd == split(%x y.y)"
split_def       "split(c,p) == THE y. EX a b. p=<a,b> & y=c(a,b)"
fsplit_def      "fsplit(R,z) == EX x y. z=<x,y> & R(x,y)"
Sigma_def       "Sigma(A,B) == UN x:A. UN y:B(x). {<x,y>}"

 (* Operations on relations *)

(*converse of relation r, inverse of function*)
converse_def    "converse(r) == {z. w:r, EX x y. w=<x,y> & z=<y,x>}"

domain_def      "domain(r) == {x. w:r, EX y. w=<x,y>}"
range_def       "range(r) == domain(converse(r))"
field_def       "field(r) == domain(r) Un range(r)"
image_def       "r `` A  == {y : range(r) . EX x:A. <x,y> : r}"
vimage_def      "r -`` A == converse(r)``A"

 (* Abstraction, application and Cartesian product of a family of sets *)

lam_def         "Lambda(A,b) == {<x,b(x)> . x:A}"
apply_def       "f`a == THE y. <a,y> : f"
Pi_def          "Pi(A,B)  == {f: Pow(Sigma(A,B)). ALL x:A. EX! y. <x,y>: f}"

  (* Restrict the function f to the domain A *)
restrict_def    "restrict(f,A) == lam x:A.f`x"

end


ML

(* 'Dependent' type operators *)

val print_translation =
  [("Pi", dependent_tr' ("@PROD", " ->")),
   ("Sigma", dependent_tr' ("@SUM", " *"))];