(* Title: HOL/List.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1994 TU Muenchen
The datatype of finite lists.
*)
List = PreList +
datatype 'a list = Nil ("[]") | Cons 'a ('a list) (infixr "#" 65)
consts
"@" :: ['a list, 'a list] => 'a list (infixr 65)
filter :: ['a => bool, 'a list] => 'a list
concat :: 'a list list => 'a list
foldl :: [['b,'a] => 'b, 'b, 'a list] => 'b
foldr :: [['a,'b] => 'b, 'a list, 'b] => 'b
hd, last :: 'a list => 'a
set :: 'a list => 'a set
list_all :: ('a => bool) => ('a list => bool)
list_all2 :: ('a => 'b => bool) => 'a list => 'b list => bool
map :: ('a=>'b) => ('a list => 'b list)
mem :: ['a, 'a list] => bool (infixl 55)
nth :: ['a list, nat] => 'a (infixl "!" 100)
list_update :: 'a list => nat => 'a => 'a list
take, drop :: [nat, 'a list] => 'a list
takeWhile,
dropWhile :: ('a => bool) => 'a list => 'a list
tl, butlast :: 'a list => 'a list
rev :: 'a list => 'a list
zip :: "'a list => 'b list => ('a * 'b) list"
upt :: nat => nat => nat list ("(1[_../_'(])")
remdups :: 'a list => 'a list
null, nodups :: "'a list => bool"
replicate :: nat => 'a => 'a list
nonterminals
lupdbinds lupdbind
syntax
(* list Enumeration *)
"@list" :: args => 'a list ("[(_)]")
(* Special syntax for filter *)
"@filter" :: [pttrn, 'a list, bool] => 'a list ("(1[_:_./ _])")
(* list update *)
"_lupdbind" :: ['a, 'a] => lupdbind ("(2_ :=/ _)")
"" :: lupdbind => lupdbinds ("_")
"_lupdbinds" :: [lupdbind, lupdbinds] => lupdbinds ("_,/ _")
"_LUpdate" :: ['a, lupdbinds] => 'a ("_/[(_)]" [900,0] 900)
upto :: nat => nat => nat list ("(1[_../_])")
translations
"[x, xs]" == "x#[xs]"
"[x]" == "x#[]"
"[x:xs . P]" == "filter (%x. P) xs"
"_LUpdate xs (_lupdbinds b bs)" == "_LUpdate (_LUpdate xs b) bs"
"xs[i:=x]" == "list_update xs i x"
"[i..j]" == "[i..(Suc j)(]"
syntax (symbols)
"@filter" :: [pttrn, 'a list, bool] => 'a list ("(1[_\\<in>_ ./ _])")
consts
lists :: 'a set => 'a list set
inductive "lists A"
intrs
Nil "[]: lists A"
Cons "[| a: A; l: lists A |] ==> a#l : lists A"
(*Function "size" is overloaded for all datatypes. Users may refer to the
list version as "length".*)
syntax length :: 'a list => nat
translations "length" => "size:: _ list => nat"
primrec
"hd(x#xs) = x"
primrec
"tl([]) = []"
"tl(x#xs) = xs"
primrec
"null([]) = True"
"null(x#xs) = False"
primrec
"last(x#xs) = (if xs=[] then x else last xs)"
primrec
"butlast [] = []"
"butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
primrec
"x mem [] = False"
"x mem (y#ys) = (if y=x then True else x mem ys)"
primrec
"set [] = {}"
"set (x#xs) = insert x (set xs)"
primrec
list_all_Nil "list_all P [] = True"
list_all_Cons "list_all P (x#xs) = (P(x) & list_all P xs)"
primrec
"map f [] = []"
"map f (x#xs) = f(x)#map f xs"
primrec
append_Nil "[] @ys = ys"
append_Cons "(x#xs)@ys = x#(xs@ys)"
primrec
"rev([]) = []"
"rev(x#xs) = rev(xs) @ [x]"
primrec
"filter P [] = []"
"filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
primrec
foldl_Nil "foldl f a [] = a"
foldl_Cons "foldl f a (x#xs) = foldl f (f a x) xs"
primrec
"foldr f [] a = a"
"foldr f (x#xs) a = f x (foldr f xs a)"
primrec
"concat([]) = []"
"concat(x#xs) = x @ concat(xs)"
primrec
drop_Nil "drop n [] = []"
drop_Cons "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
(* Warning: simpset does not contain this definition but separate theorems
for n=0 / n=Suc k*)
primrec
take_Nil "take n [] = []"
take_Cons "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
(* Warning: simpset does not contain this definition but separate theorems
for n=0 / n=Suc k*)
primrec
nth_Cons "(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
(* Warning: simpset does not contain this definition but separate theorems
for n=0 / n=Suc k*)
primrec
" [][i:=v] = []"
"(x#xs)[i:=v] = (case i of 0 => v # xs
| Suc j => x # xs[j:=v])"
primrec
"takeWhile P [] = []"
"takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
primrec
"dropWhile P [] = []"
"dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
primrec
"zip xs [] = []"
"zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
(* Warning: simpset does not contain this definition but separate theorems
for xs=[] / xs=z#zs *)
primrec
upt_0 "[i..0(] = []"
upt_Suc "[i..(Suc j)(] = (if i <= j then [i..j(] @ [j] else [])"
primrec
"nodups [] = True"
"nodups (x#xs) = (x ~: set xs & nodups xs)"
primrec
"remdups [] = []"
"remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
primrec
replicate_0 "replicate 0 x = []"
replicate_Suc "replicate (Suc n) x = x # replicate n x"
defs
list_all2_def
"list_all2 P xs ys == length xs = length ys & (!(x,y):set(zip xs ys). P x y)"
(** Lexicographic orderings on lists **)
consts
lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
primrec
"lexn r 0 = {}"
"lexn r (Suc n) = (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
{(xs,ys). length xs = Suc n & length ys = Suc n}"
constdefs
lex :: "('a * 'a)set => ('a list * 'a list)set"
"lex r == UN n. lexn r n"
lexico :: "('a * 'a)set => ('a list * 'a list)set"
"lexico r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
sublist :: "['a list, nat set] => 'a list"
"sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..size xs(]))"
end
ML
local
(* translating size::list -> length *)
fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] =
Syntax.const "length" $ t
| size_tr' _ _ _ = raise Match;
in
val typed_print_translation = [("size", size_tr')];
end;