(* Title: FOL/fologic.ML
ID: $Id$
Author: Lawrence C Paulson
Abstract syntax operations for FOL.
*)
signature FOLOGIC =
sig
val oT : typ
val mk_Trueprop : term -> term
val dest_Trueprop : term -> term
val not : term
val conj : term
val disj : term
val imp : term
val iff : term
val mk_conj : term * term -> term
val mk_disj : term * term -> term
val mk_imp : term * term -> term
val dest_imp : term -> term*term
val mk_iff : term * term -> term
val dest_iff : term -> term*term
val all_const : typ -> term
val mk_all : term * term -> term
val exists_const : typ -> term
val mk_exists : term * term -> term
val eq_const : typ -> term
val mk_eq : term * term -> term
val dest_eq : term -> term*term
val mk_binop: string -> term * term -> term
val mk_binrel: string -> term * term -> term
val dest_bin: string -> typ -> term -> term * term
end;
structure FOLogic: FOLOGIC =
struct
val oT = Type("o",[]);
val Trueprop = Const("Trueprop", oT-->propT);
fun mk_Trueprop P = Trueprop $ P;
fun dest_Trueprop (Const ("Trueprop", _) $ P) = P
| dest_Trueprop t = raise TERM ("dest_Trueprop", [t]);
(** Logical constants **)
val not = Const ("Not", oT --> oT);
val conj = Const("op &", [oT,oT]--->oT);
val disj = Const("op |", [oT,oT]--->oT);
val imp = Const("op -->", [oT,oT]--->oT)
val iff = Const("op <->", [oT,oT]--->oT);
fun mk_conj (t1, t2) = conj $ t1 $ t2
and mk_disj (t1, t2) = disj $ t1 $ t2
and mk_imp (t1, t2) = imp $ t1 $ t2
and mk_iff (t1, t2) = iff $ t1 $ t2;
fun dest_imp (Const("op -->",_) $ A $ B) = (A, B)
| dest_imp t = raise TERM ("dest_imp", [t]);
fun dest_iff (Const("op <->",_) $ A $ B) = (A, B)
| dest_iff t = raise TERM ("dest_iff", [t]);
fun eq_const T = Const ("op =", [T, T] ---> oT);
fun mk_eq (t, u) = eq_const (fastype_of t) $ t $ u;
fun dest_eq (Const ("op =", _) $ lhs $ rhs) = (lhs, rhs)
| dest_eq t = raise TERM ("dest_eq", [t])
fun all_const T = Const ("All", [T --> oT] ---> oT);
fun mk_all (Free(x,T),P) = all_const T $ (absfree (x,T,P));
fun exists_const T = Const ("Ex", [T --> oT] ---> oT);
fun mk_exists (Free(x,T),P) = exists_const T $ (absfree (x,T,P));
(* binary oprations and relations *)
fun mk_binop c (t, u) =
let val T = fastype_of t in
Const (c, [T, T] ---> T) $ t $ u
end;
fun mk_binrel c (t, u) =
let val T = fastype_of t in
Const (c, [T, T] ---> oT) $ t $ u
end;
fun dest_bin c T (tm as Const (c', Type ("fun", [T', _])) $ t $ u) =
if c = c' andalso T = T' then (t, u)
else raise TERM ("dest_bin " ^ c, [tm])
| dest_bin c _ tm = raise TERM ("dest_bin " ^ c, [tm]);
end;